精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$的图象与直线y=$\frac{1}{2}$x+b没有交点,则b的取值范围是(  )
A.(-∞,0]B.(-∞,1]C.(0,1)D.(1,+∞)

分析 函数y=f(x)的图象与y=$\frac{1}{2}$x+b直没有交点,方程$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$=$\frac{1}{2}$x+b无解,从而方程log9(9x+1)-x=b无解.令g(x)=log9(9x+1)-x,则函数y=g(x)的图象与直线y=b无交点.可以验证g(x)为减函数,从而得到g(x)>0,进而可求实数b的取值范围.

解答 解:由题意知方程$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$=$\frac{1}{2}$x+b没有解,即方程log9(9x+1)-x=b无解.
令g(x)=log9(9x+1)-x,则函数y=g(x)的图象与直线y=b无交点.
∵$g(x)=lo{g}_{9}({9}^{x}+1)-x=lo{g}_{9}(1+\frac{1}{{9}^{x}})$
任取x1、x2∈R,且x1<x2,则0<${9}^{{x}_{1}}$<${9}^{{x}_{2}}$,从而$\frac{1}{{9}^{{x}_{1}}}>\frac{1}{{9}^{{x}_{2}}}$,
可知g(x1)>g(x2
∴g(x)在(-∞,+∞)是单调减函数.
∵$1+\frac{1}{{9}^{x}}>1$,
∴$g(x)=lo{g}_{9}({9}^{x}+1)-x=lo{g}_{9}(1+\frac{1}{{9}^{x}})$>0,
函数y=g(x)的图象与直线y=b无交点,只需b≤0即可.
∴b的取值范围是(-∞,0].
故选:A

点评 本题重点考查函数的性质,考查函数与方程的关系,解题的关键是正确运用偶函数的定义,合理将问题进行等价转化

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,A=30°,AB=3,AC=2$\sqrt{3}$,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,则$\overrightarrow{AC}$•$\overrightarrow{CD}$等于(  )
A.18B.9C.-8D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.当$\frac{2}{3}$<m<1时,复数z=(3m-2)+(m-1)i在复平面上对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ,η∈(a,b),使得$\frac{f′(ξ)}{f′(η)}=\frac{{e}^{b}-{e}^{a}}{b-a}•{e}^{-η}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是奇函数,当x>0时,f(x)=x2-1,则使f(x)>0的x的取值范围x>1或-1<x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}中,Sn为其前n项和,a2+a6=6,S3=5.
(I)求数列{an}的通项公式;
(II)令${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}({n≥2}),{b_1}=3,{T_n}={b_1}+{b_2}+…+{b_n}$,若Tn<m对一切n∈N*都成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三棱柱ABC-A1B1C1的侧棱与底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)证明:AC⊥平面BCC1B1
(2)求直线BB1与平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,抛物线C:y2=8ax的焦点为F,若在E的渐近线上存在点P使得PA⊥FP,则E的离心率的取值范围是(  )
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=mlnx+nx在点(1.f(1))处的切线与直线x+y-2=0平行,且f(1)=-2,其中m,n∈R.
(Ⅰ)求m,n的值,并求出函数f(x)的单调区间;
(Ⅱ)设函数$g(x)=\frac{1}{t}(-{x^2}+2x)$,对于正实数t,若?x0∈[1,e],使得f(x0)+x0≥g(x0)成立,求t的最大值.

查看答案和解析>>

同步练习册答案