精英家教网 > 高中数学 > 题目详情
在△ABC中,若|
AB
|=2,|
AC
|=3,
AB
AC
=-3,则S△ABC=
 
考点:平面向量数量积的运算,三角形的面积公式
专题:解三角形
分析:利用向量的数量积求出两个向量的夹角,然后通过三角形的面积公式求解即可.
解答: 解:在△ABC中,若|
AB
|=2,|
AC
|=3,
AB
AC
=-3,
所以|
AB
|•|
AC
|cosA=-3,
可得cosA=-
1
2

∴sinA=
3
2

则S△ABC=
1
2
|
AB
|•|
AC
|sinA=
1
2
×2×3×
3
2
=
3
3
2

故答案为:
3
3
2
点评:本题考查三角形的面积的求法,向量的数量积的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,半径为30cm的圆形(O为圆心)铁皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形材料卷成一个以AB为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设OB与矩形材料的边OA的夹角为θ,圆柱的体积为Vcm3
(Ⅰ)求V关于θ的函数关系式,并写出定义域;
(Ⅱ)求圆柱形罐子体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若{a2,0,-1}={a,b,0},则a2014+b2014的值为(  )
A、0B、1C、-1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,直线l经过点P(-1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系,设曲线C的极坐标方程为ρ2-6ρcosθ+5=0,若直线l与曲线C有公共点,则α的取值范围是(  )
A、(0,
π
6
B、[
π
6
6
]
C、(
π
6
π
3
]∪[
3
6
]
D、[0,
π
6
]∪[
6
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分图象如图所示.若函数y=f(x)在区间[m,n]上的值域为[-
2
,2],则n-m的最小值是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线l:x-y+m=0与抛物线C:y2=4x交于不同两点A、B,F为抛物线的焦点,则△ABF的重心G的轨迹的普通方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校从参加高二年级省学业水平模拟考试的学生中抽出50名学生,并统计了他们的数学成绩,成绩的频率分布直方图如图3所示,其中成绩分组区间是:[40,50)[50,60)[60,70)[70,80)[80,90)[90,100].
(Ⅰ)求图中m的值,估计此次考试成绩的众数;
(Ⅱ)为了帮助成绩弱的学生能顺利通过省学业水平考试,学校决定成立“二帮一”学习小组.在样本中从[90,100]分数段的同学中选两位共同帮助[40,50)分数段的同学中的某一位,已知甲同学的成绩为45分,乙同学成绩96分,求甲、乙两同学恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等比数列且an>0,a1=1,a5=256;Sn为等差数列{bn}的前n项和,b1=2,5S5=2S8
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)设Tn=a1b1+a2b2+…+anbn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin(π+x)sin(
2
-x)-cos2x.
(1)求函数f(x)的最小正周期;
(2)若α∈[-
π
2
,0],f(
1
2
α+
π
3
)=
1
10
,求tanα的值.

查看答案和解析>>

同步练习册答案