精英家教网 > 高中数学 > 题目详情
某校从参加高二年级省学业水平模拟考试的学生中抽出50名学生,并统计了他们的数学成绩,成绩的频率分布直方图如图3所示,其中成绩分组区间是:[40,50)[50,60)[60,70)[70,80)[80,90)[90,100].
(Ⅰ)求图中m的值,估计此次考试成绩的众数;
(Ⅱ)为了帮助成绩弱的学生能顺利通过省学业水平考试,学校决定成立“二帮一”学习小组.在样本中从[90,100]分数段的同学中选两位共同帮助[40,50)分数段的同学中的某一位,已知甲同学的成绩为45分,乙同学成绩96分,求甲、乙两同学恰好被安排在同一小组的概率.
考点:频率分布直方图,列举法计算基本事件数及事件发生的概率
专题:图表型
分析:(1)根据所有矩形的面积和为1可求出m的值,众数就是分布图里最高的那条,从而可得结论;
(2)先算出成绩在[40,50)分数段内的人数,以及成绩在[90,100]分数段内的人数,列出所有的“二帮一”小组分组办法的基本事件,以及甲、乙两同学被分在同一小组的基本事件,最后利用古典概型的概率公式解之即可.
解答: 解:(1)因为所有矩形的面积和为1,所以0.04+0.04+0.12+0.5+10m+0.08=1,
解得m=0.022,
众数就是分布图里最高的那条,即[70,80]的中点横坐标75.
(2)成绩在[40,50)分数段内的人数为50×0.04=2人
成绩在[90,100]分数段内的人数为50×0.08=4人,
[40,50)内有2人,记为甲、A.
[90,100)内有4人,记为乙、B、C、D.
则“二帮一”小组有以下12种分组办法:甲乙B,甲乙C,甲乙D,甲BC,甲BD,甲CD,A乙B,A乙C,A乙D,ABC,ABD,ACD,
其中甲、乙两同学被分在同一小组有3种办法:甲乙B,甲乙C,甲乙D,
所以甲乙两同学恰好被安排在同一小组的概率
3
12
=
1
4
点评:本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(
1
x
)=x+
1
x
-2,则f(x)=(  )
A、x+
1
x
-1
B、=x+
1
x
C、x+
1
x
-2
D、x+
1
x
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,直线l的参数方程为
x=t
y=kt+1
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,已知曲线C的极坐标方程为ρ=2cosθ,若直线l与曲线C相切,则k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若|
AB
|=2,|
AC
|=3,
AB
AC
=-3,则S△ABC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.
(1)求函数f(x)在[-2,2]上的最值;
(2)设函数g(x)的导函数g′(x)=f(x)+3x+8,求g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),使f(x)成立的所有常数(-∞,0)中,我们把f(x)的最小值[0,+∞)叫做函数
g(x)的上确界.则函数f(0)=1的上确界是(  )
A、0
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x+1,x≥1
3-x,x<1
,则f(f(-1))的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,令bn=2n•an,则数列{bn}的前n项和Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域为
 
,并且取最大值时x的值为
 

查看答案和解析>>

同步练习册答案