8£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÓÒ¶¥µãΪA£¬É϶¥µãΪB£¬×ø±êϵԭµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{21}}{7}$£¬ÍÖÔ²µÄÀëÐÄÂÊÊÇ$\frac{1}{2}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èç¹û¶¯Ö±Ïßl£ºy=kx+nÓëÍÖÔ²CÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µã£¬µãF1£¬F2ÔÚÖ±ÏßlÉϵÄÕýͶӰ·Ö±ðÊÇP£¬Q£¬ÇóËıßÐÎF1PQF2Ãæ»ýSµÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬¼´a2=2b2£®¸ù¾ÝÈý½ÇÐÎOABÃæ»ýÏàµÈ£º$\frac{1}{2}$ab=$\frac{1}{2}$¡Á$\frac{2\sqrt{21}}{7}$•$\sqrt{{a}^{2}+{b}^{2}}$£¬´úÈë¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨¢ò£©½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉ¡÷=0£¬4k2-n2+3=0£¬ÓÉF1P¡Íl£¬F2Q¡Íl£¬Ö±½ÇÌÝÐÎF1PQF2ÖÐλÏß³¤d1=$\frac{Ø­nØ­}{\sqrt{1+{k}^{2}}}$£¬µãF2£¨1£¬0£©Ö±ÏßF1PµÄ¾àÀëd2=$\frac{2}{\sqrt{1+{k}^{2}}}$£¬${S}_{{F}_{1}PQ{F}_{2}}$=d1•d2=$\frac{2Ø­nØ­}{1+{k}^{2}}$=2$\sqrt{\frac{4{k}^{2}+3}{£¨1+{k}^{2}£©^{2}}}$£¬Ôò¸ù¾Ýº¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉÇóµÃËıßÐÎF1PQF2Ãæ»ýSµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©½¹µãÔÚxÖáÉÏ£¬
ÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{1}{2}$£¬¼´a2=2b2£®
ÓÉ×ø±êϵԭµãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{2\sqrt{21}}{7}$£¬
Ôò$\frac{1}{2}$ab=$\frac{1}{2}$¡Á$\frac{2\sqrt{21}}{7}$•$\sqrt{{a}^{2}+{b}^{2}}$£¬
¡à$\frac{\sqrt{3}}{2}$a2=$\frac{2\sqrt{21}}{7}$$\sqrt{{a}^{2}+\frac{3}{4}{a}^{2}}$£¬
½âµÃ£ºa=2£¬b=$\sqrt{3}$£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨¢ò£©ÓÉÖ±ÏßlÓëÍÖÔ²½öÓÐÒ»¸ö¹«¹²µã£¬
¡à$\left\{\begin{array}{l}{y=kx+n}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨3+4k2£©x2+8knx=4n2-12=0£¬
ÓÉ¡÷=0£¬4k2-n2+3=0£¬
ÓÉF1P¡Íl£¬F2Q¡Íl£¬
µ±¢Ùk¡Ù0£¬ÔÚÖ±½ÇÌÝÐÎF1PQF2ÖÐλÏß³¤d1=$\frac{Ø­nØ­}{\sqrt{1+{k}^{2}}}$£¬
Ö±ÏßF1PµÄ·½³ÌΪ£ºx+ky+1=0£¬
µãF2£¨1£¬0£©Ö±ÏßF1PµÄ¾àÀëd2=$\frac{2}{\sqrt{1+{k}^{2}}}$£¬
${S}_{{F}_{1}PQ{F}_{2}}$=d1•d2=$\frac{2Ø­nØ­}{1+{k}^{2}}$=2$\sqrt{\frac{4{k}^{2}+3}{£¨1+{k}^{2}£©^{2}}}$£¬
Áît=3+4k2£¬
¡àS=8$\frac{t}{2{t}^{2}+2t+1}$=8$\sqrt{\frac{1}{t+\frac{1}{t}+2}}$£¬
ÓÑt£¾3£¬ÓÉË«¹´º¯ÊýÖªSÔÚt£¾3Éϵ¥µ÷µÝ¼õ£¬
¡à0£¼S£¼2$\sqrt{3}$£¬
¢Úµ±k=0ʱ£¬n=¡À$\sqrt{3}$£¬S=2$\sqrt{3}$£¬
×ÛÉÏËùÊö£ºËıßÐÎF1PQF2Ãæ»ýSȡֵ·¶Î§Îª£¨0£¬2$\sqrt{3}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬Ë«¹´º¯ÊýµÄµ¥µ÷ÐÔµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®?x¡Ê[1£¬3]ʹa+x+$\frac{1}{x}$£¾0£¬ÔòaµÄȡֵ·¶Î§Îª£¨-$\frac{10}{3}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®£¨1£©É踴ÊýzÂú×ã|z|=5£¬ÇÒ£¨3+4i£©zÊÇ´¿ÐéÊý£¬Çóz£®
£¨2£©ÒÑÖªm£¾0£¬a£¬b¡ÊR£¬ÇóÖ¤£º£¨$\frac{a+mb}{1+m}$£©2¡Ü$\frac{{a}^{2}+m{b}^{2}}{1+m}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy2=4xµÄ½¹µãµ½Æä×¼ÏߵľàÀëΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¼«×ø±êµÄ¼«µãÔÚÖ±½Ç×ø±êϵµÄÔ­µãO´¦£¬¼«ÖáÓëxÖáµÄÕý°ëÖáÖØºÏ£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌÊǦѣ¨cos¦È+2sin¦È£©=15£®ÈôµãP¡¢Q·Ö±ðÊÇÇúÏßCºÍÖ±ÏßlÉϵ͝µã£¬ÔòP¡¢QÁ½µãÖ®¼ä¾àÀëµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$\sqrt{10}$B£®2$\sqrt{3}$C£®2$\sqrt{5}$D£®$\sqrt{21}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax-sinxÔÚÇø¼ä£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©ÉÏÓÐÇÒ½öÓÐÒ»¸öÁãµã£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®a¡Ý1B£®a¡Ý1»òa¡Ü$\frac{2}{¦Ð}$C£®a£¾1»òa¡Ü0D£®a$£¼\frac{2}{¦Ð}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼÊÇÒ»¸öÃæ»ýΪ1µÄÈý½ÇÐΣ¬ÏÖ½øÐÐÈçϲÙ×÷£®µÚÒ»´Î²Ù×÷£º·Ö±ðÁ¬½áÕâ¸öÈý½ÇÐÎÈý±ßµÄÖе㣬¹¹³É4¸öÈý½ÇÐΣ¬ÍÚÈ¥ÖмäÒ»¸öÈý½ÇÐΣ¨Èçͼ¢ÙÖÐÒõÓ°²¿·ÖËùʾ£©£¬²¢ÔÚÍÚÈ¥µÄÈý½ÇÐÎÉÏÌùÉÏÊý×Ö±êÇ©¡°1¡±£»µÚ¶þ´Î²Ù×÷£ºÁ¬½áÊ£ÓàµÄÈý¸öÈý½ÇÐÎÈý±ßµÄÖе㣬ÔÙÍÚÈ¥¸÷×ÔÖмäµÄÈý½ÇÐΣ¨Èçͼ¢ÚÖÐÒõÓ°²¿·ÖËùʾ£©£¬Í¬Ê±ÔÚÍÚÈ¥µÄ3¸öÈý½ÇÐÎÉ϶¼ÌùÉÏÊý×Ö±êÇ©¡°2¡±£»µÚÈý´Î²Ù×÷£ºÁ¬½áÊ£ÓàµÄ¸÷Èý½ÇÐÎÈý±ßµÄÖе㣬ÔÙÍÚÈ¥¸÷×ÔÖмäµÄÈý½ÇÐΣ¬Í¬Ê±ÔÚÍÚÈ¥µÄÈý½ÇÐÎÉ϶¼ÌùÉÏÊý×Ö±êÇ©¡°3¡±£»¡­£¬Èç´ËÏÂÈ¥£®¼ÇµÚn´Î²Ù×÷ÖÐÍÚÈ¥µÄÈý½ÇÐθöÊýΪan£®Èça1=1£¬a2=3£®

£¨1£©Çóan£»
£¨2£©ÇóµÚn´Î²Ù×÷ºó£¬ÍÚÈ¥µÄËùÓÐÈý½ÇÐÎÃæ»ýÖ®ºÍPn£¿
£¨3£©ÇóµÚn´Î²Ù×÷ºó£¬ÍÚÈ¥µÄËùÓÐÈý½ÇÐÎÉÏËùÌù±êÇ©ÉϵÄÊý×ÖºÍQn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªM={x|y=$\sqrt{1-lo{g}_{2}x}$}£¬N={x|x2-2x-3£¼0}£¬ÔòM¡ÉN=£¨¡¡¡¡£©
A£®£¨0£¬2£©B£®£¨-1£¬2]C£®£¨0£¬2]D£®£¨-1£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖÐÓÐÈýÌõÖ±Ïßl1£¬l2£¬l3£¬Æä¶ÔÓ¦µÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬ÔòÏÂÃæÑ¡ÏîÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®k3£¾k1£¾k2B£®k1-k2£¼0C£®k2•k3£¾0D£®k3£¾k2£¾k1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸