精英家教网 > 高中数学 > 题目详情
11.一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为4$\sqrt{3}$π.

分析 球的直径正好是正方体的体对角线,从而可求出球的半径,得出体积.

解答 解:设正方体的棱长为a,则6a2=24,即a=2,
∴正方体的体对角线是为2$\sqrt{3}$,
∴球的半径为r=$\sqrt{3}$.故该球的体积V=$\frac{4π{r}^{3}}{3}$=4$\sqrt{3}π$.
故答案为:4$\sqrt{3}π$.

点评 本题考查了多面体与球的外置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数既是奇函数,又在(0,+∞)上是单调递增的是(  )
A.y=sin2xB.y=x|x|C.y=ex+e-xD.y=x3+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.883+6被49除所得的余数是0(请用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}(a+1){x^2}$+x(a∈R)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线E:y2=4x的焦点为F,点C(-1,0),过点F的直线l与抛物线E相交于A,B两点,若AB⊥BC,则|AF|-|BF|=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${\vec e_1}$,${\vec e_2}$是同一平面内两个单位向量,其夹角为60°,如果$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$.
(1)求$\vec a•\vec b$
(2)求$\vec a$与$\vec b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下2×2列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整;
(2)并判断是否有99%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面是临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
参考公式:K2的观测值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+2)(a+c)(b+d)}$(其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市调研考试后,某校对甲乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的列联表,且已知甲、乙两个班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$
 优秀 非优秀 合计 
甲  10  
 乙 30  
 合计  110 
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名同学从2到10进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求9号或10号概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
独立性检验临界值
P(K2≥k0) 0.10 0.050 0.025 0.010 0.001 
k0 2.706  3.841 5.024 6.63510.828 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若圆x2+y2-4x=0上恰有四个点到直线2x-y+m=0的距离等于1,则实数m的取值范围是方程是(  )
A.$({-2-\sqrt{5},-2+\sqrt{5}})$B.$({-4-\sqrt{5},-4+\sqrt{5}})$C.$({-4-3\sqrt{5},-4-\sqrt{5}})$D.$({-4+\sqrt{5},-4+3\sqrt{5}})$

查看答案和解析>>

同步练习册答案