精英家教网 > 高中数学 > 题目详情
7.在极坐标系中,圆C:ρ=2与曲线ρ=$\frac{a}{1-acosθ}$(a>0)交于A,B两点,当|AB|取最大值时,a=2.

分析 圆C:ρ=2化为直角坐标方程:x2+y2=4.曲线ρ=$\frac{a}{1-acosθ}$(a>0)化为ρ=ax+a,两边平方可得ρ2=x2+y2=a2(x+1)2,当|AB|取最大值直径时,x=0,代入解出即可得出.

解答 解:圆C:ρ=2化为直角坐标方程:x2+y2=4.
曲线ρ=$\frac{a}{1-acosθ}$(a>0)化为ρ=ax+a,两边平方可得ρ2=x2+y2=a2(x+1)2
可得2=a(x+1),x=$\frac{2}{a}$-1,
当|AB|取最大值直径4时,直线经过圆心,
则x=0,代入可得:a=2.
故答案为:2.

点评 本题考查了极坐标方程化为直角坐标方程、曲线相交弦长问题,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知直线x+y=1与圆(x-a)2+(y-b)2=2(a>0,b>0)相切,则ab的取值范围是(  )
A.(0,$\frac{3}{2}$]B.(0,$\frac{9}{4}$]C.(0,3]D.(0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a=sinxcosx,b=sinx+cosx.
(1)求a,b的关系式;
(2)若x∈(0,$\frac{π}{2}$),求y=sinxcosx+sinx+cosx的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD内接于圆O,AC与BD相交于点F,AE与圆O相切于点A,与CD的延长线相交于点E,∠ADE=∠BDC.
(Ⅰ)证明:A、E、D、F四点共圆;
(Ⅱ)证明:AB∥EF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l:ρsinθ-ρcosθ+1=0与曲线C交于不同的两点M,N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则函数y=f(f(x))的零点等于e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a、b、c、d是4个整致,且使得m=(ab+cd)2-$\frac{1}{4}$(a2+b2-c2-d22是个非零整数,求证:|m|一定是个合数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为(  )
A.$\sqrt{37}$-1B.$\frac{8\sqrt{5}}{5}$C.$\frac{8\sqrt{5}-5}{5}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=aln(x+1)-x2,在区间(0,1)内任取两个不相等的实数p,q,若不等式$\frac{f(p+1)-f(q+1)}{p-q}$>1恒成立,则实数a的取值范围是(  )
A.[15,+∞)B.[6,+∞)C.(-∞,15]D.(-∞,6]

查看答案和解析>>

同步练习册答案