精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则函数y=f(f(x))的零点等于e.

分析 令f(x)=t,y=f(t),利用零点,解方程,即可求出函数y=f(f(x))的零点.

解答 解:令f(x)=t,y=f(t),
由f(t)=0,可得t=1,
由f(x)=1,可得x=e,
∴函数y=f(f(x))的零点等于e,
故答案为:e.

点评 本题考查函数的零点,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知直线l:y=kx+1与圆C:(x-2)2+(y-3)2=1相交于A,B两点
(1)求弦AB的中点M的轨迹方程;
(2)若O为坐标原点,S(k)表示△OAB的面积,若f(k)=[S(k)•(k2+1)]2,求f(k)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知C为AB为直径的圆O上任意一点,且△SAC为等边三角形,平面SAC⊥平面ABC.
(1)求证:BC⊥SA;
(2)求二面角A-BC-S所成角的大小;
(3)若AC=2,SB=2$\sqrt{3}$,求直线SB与平面ABC所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平行四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,BC=$\sqrt{3}$AB,对角线AC=2.
(1)求对角线BD的长;
(2)求点A到BD的长.
(参考数据:$\sqrt{2+\sqrt{3}}$=$\frac{\sqrt{2}+\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在极坐标系中,圆C:ρ=2与曲线ρ=$\frac{a}{1-acosθ}$(a>0)交于A,B两点,当|AB|取最大值时,a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c∈R,且ab+bc+ac=1.
(1)求证:|a+b+c|≥$\sqrt{3}$;
(2)若?x∈R,使得对一切实数a,b,c不等式m+|x-1|+|x+1|≤(a+b+c)2恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+(m-1)x+m2-2,若f(x)=0的两根一个大于-1,一个小于-1,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.己知sinα+cosα=a(0≤a≤$\sqrt{2}$),则sinnα+cosnα关于a的表达式为sinnα+cosnα=($\frac{a+\sqrt{-{a}^{2}+2}}{2}$)n+($\frac{a-\sqrt{-{a}^{2}+2}}{2}$)n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.
(1)证明:A1B1⊥B1C.
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求点O到平面A1B1C1的距离.

查看答案和解析>>

同步练习册答案