分析 (1)要证A1B1⊥B1C,即证明B1C⊥AB,即证B1C⊥平面ABC1,由菱形的对角线垂直和线面垂直的性质,即可得证;
(2)由线面垂直可得棱锥的高为AO,由直角三角形的性质,可得高,再由棱锥的体积公式,即可得到点O到平面A1B1C1的距离.
解答 (1)证明:AO⊥平面BB1C1C,则AO⊥B1C,
菱形BB1C1C,则B1C⊥BC1,
AO∩BC1=O,AO,BC1?平面ABC1,
则有B1C⊥平面ABC1,
则B1C⊥AB,
∴A1B1⊥B1C;
(2)解:菱形BB1C1C中,∠CBB1=60°,BC=1,则B1C=1,
AO⊥平面BB1C1C,则AO⊥B1C,由于AC⊥AB1,
则AO=$\frac{1}{2}$B1C=$\frac{1}{2}$,
△ABC中,BC=1,AC=$\frac{\sqrt{2}}{2}$,AB=$\sqrt{\frac{1}{4}+\frac{3}{4}}$=1,
∴S△ABC=$\frac{1}{2}×\frac{\sqrt{2}}{2}×\sqrt{1-(\frac{\sqrt{2}}{4})^{2}}$=$\frac{\sqrt{7}}{8}$.
设点O到平面A1B1C1的距离为h,则
由等体积可得$\frac{1}{3}×\frac{\sqrt{7}}{8}h$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{3}}{4}×\frac{1}{2}$,
∴h=$\frac{2\sqrt{21}}{3}$.
点评 本题考查线面垂直的性质和判定定理及运用,考查棱锥的体积公式和运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [15,+∞) | B. | [6,+∞) | C. | (-∞,15] | D. | (-∞,6] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com