精英家教网 > 高中数学 > 题目详情
1.己知sinα+cosα=a(0≤a≤$\sqrt{2}$),则sinnα+cosnα关于a的表达式为sinnα+cosnα=($\frac{a+\sqrt{-{a}^{2}+2}}{2}$)n+($\frac{a-\sqrt{-{a}^{2}+2}}{2}$)n

分析 把已知等式两边平方,整理表示出sinαcosα,根据sinα+cosα与sinαcosα构造方程,将原式变形即可.

解答 解:把sinα+cosα=a(0≤a≤$\sqrt{2}$),两边平方得:(sinα+cosα)2=1+2sinαcosα=a2
整理得:sinαcosα=$\frac{{a}^{2}-1}{2}$,
构造方程x2-ax+$\frac{{a}^{2}-1}{2}$=0,
解得:x=$\frac{a±\sqrt{-{a}^{2}+2}}{2}$,且sinα与cosα为方程的解,
则sinnα+cosnα=($\frac{a+\sqrt{-{a}^{2}+2}}{2}$)n+($\frac{a-\sqrt{-{a}^{2}+2}}{2}$)n
故答案为:($\frac{a+\sqrt{-{a}^{2}+2}}{2}$)n+($\frac{a-\sqrt{-{a}^{2}+2}}{2}$)n

点评 此题考查了三角函数的化简求值,熟练掌握同角三角函数间的基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知两条直线l1:y=m和l2:y=$\frac{8}{2m+1}$(m>0),l1与函数y=|log2x|的图象从左到右相交于A、B,l2与函数y=|log2x|的图象从左到右相交于C、D,记线段AC和BD在x轴上的投影长度分别为a,b,当m变化时,$\frac{b}{a}$的最小值为(  )
A.16$\sqrt{2}$B.8$\sqrt{2}$C.8$\root{3}{4}$D.4$\root{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则函数y=f(f(x))的零点等于e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若直线l:x+y-2=0与圆C:x2+y2-2x-6y+2=0交于A、B两点,则△ABC的面积为(  )
A.$2\sqrt{3}$B.$2\sqrt{2}$C.$2\sqrt{5}$D.$2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P为线段y=2x,x∈[2,4]上任意一点,点Q为圆C:(x-3)2+(y+2)2=1上一动点,则线段|PQ|的最小值为(  )
A.$\sqrt{37}$-1B.$\frac{8\sqrt{5}}{5}$C.$\frac{8\sqrt{5}-5}{5}$D.$\sqrt{37}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线f(x)=x3-2x.求:
(1)在点(1,-1)处的切线方程;
(2)过点(1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD是菱形,∠BAD=60°,四边形BDD1B1是正方形.E是棱CC1的中点.
(1)求证:面BED1⊥面BDD1B1
(2)求二面角B1-AD1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,PA,PC为圆O的两条不同切线,割线PDB与圆O交于不同两点D,B.
(1)求证:$\frac{AD}{AB}$=$\frac{PC}{PB}$;
(2)若DA=4,AB=6,BC=3,求线段CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e2x-1-2x-kx2
(1)当k=0时,求f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求k的取值范围.

查看答案和解析>>

同步练习册答案