精英家教网 > 高中数学 > 题目详情
设函数f(x)=2cos2(
π
4
-x)+sin(2x+
π
3
)-1,x∈R

(1)求函数f(x)的最小正周期;
(2)当x∈[0,
π
2
]
时,求函数f(x)的值域.
分析:(1)利用二倍角公式、辅助角公式化简函数,即可求得函数的最小正周期;
(2)根据x∈[0,
π
2
]
,可得2x+
π
6
∈[
π
6
6
]
,由此可得函数的值域.
解答:解:(1)∵f(x)=2cos2(
π
4
-x)+sin(2x+
π
3
)-1
=
1
2
sin2x+
3
2
cos2x+cos(
π
2
-2x)
=
3
2
sin2x+
3
2
cos2x

=
3
sin(2x+
π
6
)

∴函数f(x)的最小正周期是T=
2
=π;
(2)当x∈[0,
π
2
]
时,2x+
π
6
∈[
π
6
6
]
,∴sin(2x+
π
6
)∈[-
1
2
,1]

3
sin(2x+
π
6
)
[-
3
2
3
]

∴当x∈[0,
π
2
]
时,函数f(x)的值域是[-
3
2
3
]
点评:本题考查三角函数的化简,考查三角函数的性质,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
x2(x≤0)
3x(x>0)
,若f(α)=9,则实数α=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2,x<1
x-1
,x≥1
则f(f(f(1)))=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖南模拟)设函数f(x)=ax2+bx+c,且f(1)=-
a
2
,3a>2c>2b
,求证:
(1)a>0且-3<
b
a
<-
3
4

(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则
2
≤|x1-x2|<
57
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-4x,x≤0
x2,x>0
,若f(a)=4
,则实数a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+bx+c(x≤0)
2(x>0)
,若f(-2)=f(0),f(-1)=-3,则关于x的方程f(x)=x的解的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案