精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\left\{\begin{array}{l}{x-\frac{9}{4}(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,则f[f($\frac{1}{4}$)]的值是(  )
A.$\frac{1}{9}$B.9C.-$\frac{1}{9}$D.-9

分析 由$\frac{1}{4}$>0,得f($\frac{1}{4}$)=$\frac{1}{4}-\frac{9}{4}$=-2,从而f[f($\frac{1}{4}$)]=f(-2),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{x-\frac{9}{4}(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,
∴f($\frac{1}{4}$)=$\frac{1}{4}-\frac{9}{4}$=-2,
∴f[f($\frac{1}{4}$)]=f(-2)=${3}^{-2}=\frac{1}{9}$.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列表示中,属于同一集合的是 (  )
A.M={3,2},N={(3,2)}B.M={3,2},N={2,3}
C.M={(x,y)|y=-x+1},N={y|y=1-x}D.M={1,2},N={(2,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知f(x+1)=x2+4x+1,求f(x)的解析式.
(2)已知f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9.求f(x).
(3)已知f(x)满足2f(x)+f($\frac{1}{x}$)=3x,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x>y>1,则下列不等式一定成立的是(  )
A.($\frac{1}{2}$)x>($\frac{1}{2}$)yB.x-2>y-2C.x${\;}^{\frac{1}{2}}$>y${\;}^{\frac{1}{4}}$D.log0.2x>log0.2y

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.以下关于斜二测画法作直观图的命题:
①相等的角在直观图中仍相等;
②相等的线段在直观图中长度仍相等;
③平行四边形的直观图仍是平行四边形;
④菱形的直观图仍是菱形.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)sin(-π-α)}$;    
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)设有命题p:{2n}是等差数列,q:{2n}是等比数列,问命题?(p∨q)和命题(?p)∧(?q)是真命题还是假命题?
(2)设p,q是任意两个命题,完成下列真值表:
pqP∨q¬(p∨q)¬p¬q(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.对于函数f(x)=x3+ax2-x+1,给出下列命题:
①该函数必有2个极值;       ②该函数的极大值必大于1;
③该函数的极小值必小于1;   ④方程f(x)=0一定有三个不等的实数根.
则正确的命题序号为:①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数$f(x)=({1+\sqrt{3}tanx})cosx,0≤x≤\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}+1$D.$\sqrt{3}+2$

查看答案和解析>>

同步练习册答案