分析 (1)利用诱导公式化简函数的表达式即可.
(2)利用同角三角函数基本关系式以及诱导公式化简求解即可.
解答 解:(1)f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)sin(-π-α)}$=$\frac{-sinαcosαtanα}{tanαsinα}$=-cosα;
(2)α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,可得-sinα=$\frac{1}{5}$,即sinα=-$\frac{1}{5}$,
cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{2\sqrt{6}}{5}$.
f(α)的值为:$\frac{2\sqrt{6}}{5}$.
点评 本题考查诱导公式的应用,三角函数的化简求值,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | 9 | C. | -$\frac{1}{9}$ | D. | -9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com