精英家教网 > 高中数学 > 题目详情
2.设常数a>0,函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$为奇函数,则a的值为(  )
A.1B.-2C.4D.3

分析 函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$为奇函数,可得f(-x)+f(x)=0,代入化简,即可求出a的值.

解答 解:∵函数f(x)=$\frac{{2}^{x}+a}{{2}^{x}-a}$为奇函数,
∴f(-x)+f(x)=0,
即$\frac{{2}^{-x}+a}{{2}^{-x}-a}$+$\frac{{2}^{x}+a}{{2}^{x}-a}$=0,
化简得(1+a•2x)(2x-a)+(1-a2x)(2x+a)=0;
故2•2x(1-a2)=0,
解得,a=1或a=-1;
∵a>0,∴a=1.
故选:A.

点评 本题考查函数奇偶性的定义,考查学生的计算能力,正确计算是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求圆心在(a,$\frac{3π}{2}$),半径为a的圆的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z1,z2在复平面内对应的点关于y轴对称,且z1=2-i,则复数$\frac{{z}_{1}}{{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)当a=b=1时,求满足f(x)=3x的x的取值;
(2)若函数f(x)是定义在R上的奇函数
①存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范围;
②若函数g(x)满足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若对任意x∈R,不等式g(2x)≥m•g(x)-11恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列表示中,属于同一集合的是 (  )
A.M={3,2},N={(3,2)}B.M={3,2},N={2,3}
C.M={(x,y)|y=-x+1},N={y|y=1-x}D.M={1,2},N={(2,1)}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知点A(0,3)和直线l:y=2x-4,设圆C的半径为1,圆心C在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,试求圆C的方程和切线的方程;
(2)若圆心上存在点M使|MA|=2|MO|(O为原点),求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(文科)已知抛物线y2=2x,直线l过点(0,2)与抛物线交于M,N两点,O为坐标原点,且$\overrightarrow{OM}$•$\overrightarrow{ON}$=0,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}}$的值为(  )
A.$\frac{4}{9}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$-\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)sin(-π-α)}$;    
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

同步练习册答案