分析 (1)联立直线l与直线y=x-1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;
(2)设M(x,y),由|MA|=2|MO|,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a的范围.
解答 解:(1)联立得:$\left\{\begin{array}{l}{y=x-1}\\{y=2x-4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=3}\\{y=2}\end{array}\right.$,
∴圆心C(3,2).
若k不存在,不合题意;
若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即$\frac{|3k+3-2|}{\sqrt{1+{k}^{2}}}$=1,
解得:k=0或k=-$\frac{3}{4}$,
则所求切线为y=3或y=-$\frac{3}{4}$x+3;
(2)设点M(x,y),由|MA|=2|MO|,知:$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,
化简得:x2+(y+1)2=4,
∴点M的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D,
又∵点M在圆C上,C(a,2a-4),
∴圆C与圆D的关系为相交或相切,
∴1≤|CD|≤3,其中|CD|=$\sqrt{{a}^{2}+(2a-3)^{2}}$,
∴1≤$\sqrt{{a}^{2}+(2a-3)^{2}}$≤3,
解得:0≤a≤2.4.
点评 此题考查了圆的切线方程,点到直线的距离公式,以及圆与圆的位置关系的判定,涉及的知识有:两直线的交点坐标,直线的点斜式方程,两点间的距离公式,圆的标准方程,是一道综合性较强的试题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $4\sqrt{2}$ | C. | 4 | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com