精英家教网 > 高中数学 > 题目详情
20.给出下列关系:①∅⊆{0}; ②$\sqrt{2}$∈Q;③3∈{x|x2=9};④0∈Z.正确的个数是(  )
A.1B.2C.3D.4

分析 根据根据空集是任何集合的子集可判断①;$\sqrt{2}$为实数,可判断②; 根据元素与集合之间关系可判断③④.

解答 解:①∅⊆{0}正确.
②$\sqrt{2}$∈R,错误;
③3∈{3,-3},正确;
④0∈Z,正确;
故正确的命题个数为3个.
故选:C.

点评 本题以命题的真假判断为载体考查了集合的基本概念,熟练掌握特殊数列的字母表示及空集的定义和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{-{3}^{x}+a}{{3}^{x+1}+b}$.
(1)当a=b=1时,求满足f(x)=3x的x的取值;
(2)若函数f(x)是定义在R上的奇函数
①存在t∈R,不等式f(t2-2t)<f(2t2-k)有解,求k的取值范围;
②若函数g(x)满足f(x)•[g(x)+2]=$\frac{1}{3}$(3-x-3x),若对任意x∈R,不等式g(2x)≥m•g(x)-11恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.计算(-3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}}$的值为(  )
A.$\frac{4}{9}$B.$\frac{9}{4}$C.$-\frac{4}{9}$D.$-\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,则此几何体的体积为(  )
A.$\frac{8}{3}$B.3C.$6+2\sqrt{2}$D.$6+2\sqrt{2}+\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若x>y>1,则下列不等式一定成立的是(  )
A.($\frac{1}{2}$)x>($\frac{1}{2}$)yB.x-2>y-2C.x${\;}^{\frac{1}{2}}$>y${\;}^{\frac{1}{4}}$D.log0.2x>log0.2y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若曲线y=alnx与曲线y=$\frac{1}{2e}$x2在它们的公共点P(s,t)处具有公共切线,则$\frac{t}{s}$=$\frac{\sqrt{e}}{2e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+π)}{-tan(-α-π)sin(-π-α)}$;    
(1)化简f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.实数a,b,c,d满足:①d>c;②a+b=c+d;③a+d<b+c,则a,b,c,d大小关系为(  )
A.a<b<c<dB.a<c<d<bC.b<a<c<dD.c<b<a<d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\left\{{\begin{array}{l}{alnx+x+\frac{3}{x},x≥1}\\{{x^3}+a{x^2}+2x-2,x<1}\end{array}}\right.$,a∈R.
(1)若a=-2,求函数f(x)的单调区间;
(2)若函数f(x)在区间(0,2)上单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案