精英家教网 > 高中数学 > 题目详情

幂指函数y=f(x)g(x)在求导数时,可以运用对数法:在函数解析式两边求对数得,两边求导数得,于是y′=f(x)g(x)·.运用此法可以探求得知y=的一个单调递增区间为(  ).

A.(0,2) B.(2,3) C.(e,4) D.(3, 8)

 

A

【解析】

试题分析:由题可知对原函数两边取对数可得,两边对求导可得,即,对于时,,,,故,为单调递增区间.

考点:导数的运算.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届山东省菏泽市高二下学期期末考试文科数学试卷(解析版) 题型:解答题

(Ⅰ)求证:+<2

(Ⅱ)已知a>0,b>0且a+b>2,求证:中至少有一个小于2.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°.

(1)证明:BD⊥AA1;

(2)求锐二面角D-A1A-C的平面角的余弦值;

(3)在直线CC1上是否存在点P,使BP∥平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

在下列命题中:

①若向量a,b共线,则向量a,b所在的直线平行;

②若向量a,b所在的直线为异面直线,则向量a,b一定不共面;

③若三个向量a,b,c两两共面,则向量a,b,c共面;

④已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得p=xa+yb+zc.

其中正确命题的个数是(  )

A.0      B.1 C.2 D.3

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试文科数学试卷(解析版) 题型:填空题

已知定义在R上的偶函数满足:f(x+4)=f(x)+f(2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:

①f(2)=0;

②x=-4为函数y=f(x)图象的一条对称轴;

③函数y=f(x)在[8,10]上单调递增;

④若方程f(x)=m在[-6,-2]上的两根为x1,x2则x1+x2=-8.以上命题中所有正确命题的序号为________.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试文科数学试卷(解析版) 题型:选择题

函数的值域是(  )

A.(-1,0)∪(0,1) B.[-1,1] C.(-1,1) D.[-1,0]∪(0,1)

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知动圆()

(1)当时,求经过原点且与圆相切的直线的方程;

(2)若圆恰在圆的内部,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中考试理科数学试卷(解析版) 题型:选择题

若直线与直线平行,则的值为( )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届山东省高二下学期期中检测理科数学试卷(解析版) 题型:选择题

由直线x=-,x=,y=0与曲线y=cosx所围成的封闭图形的面积为( )

A. B.1 C. D.

 

查看答案和解析>>

同步练习册答案