精英家教网 > 高中数学 > 题目详情

某单位实行休年假制度三年来,名职工休年假的次数进行的调查统计结果如下表所示:

休假次数




人数




根据上表信息解答以下问题:
⑴从该单位任选两名职工,用表示这两人休年假次数之和,记“函数,在区间上有且只有一个零点”为事件,求事件发生的概率
⑵从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量的分布列及数学期望.

(1)
(2)的分布列:


0
1
2
3





的数学期望:

解析试题分析:解:(1) 函数点,在区间上有且只有一个零点,则必有即:,解得:
所以,                           3分
时,,当时, 
为互斥事件,由互斥事件有一个发生的概率公式
所以                        7分
(2) 从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,则的可能取值分别是,            
于是


           10分
从而的分布列:


0
1
2
3





的数学期望:.            14分
考点:组合数与概率,分布列
点评:解答题主要是考查了运用组合数来表示古典概型概率以及分布列的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为了调查某大学学生在周日上网的时间,随机对1OO名男生和100名女生进行了不记 名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表

表2:女生上网时间与频数分布表

(I)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(II)完成下面的2x2列联表,并回答能否有90%的把握认为“学生周日上网时间与性 别有关”?
表3:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若是从三个数中任取的一个数,是从四个数中任取的一个数,求为偶函数的概率;
(Ⅱ)若,是从区间任取的一个数,求方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某产品的三个质量指标分别为x, y, z, 用综合指标S =" x" + y + z评价该产品的等级. 若S≤4, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列表如下:

产品编号
A1
A2
A3
A4
A5
质量指标(x, y, z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
产品编号
A6
A7
A8
A9
A10
质量指标(x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,
(1) 用产品编号列出所有可能的结果;
(2) 设事件B为 “在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市举行一次数学新课程骨干培训活动,共邀请15名使用不同版本教材的数学教师,具体情况数据如下表所示:

版本
人教A版
人教B版
性别
男教师
女教师
男教师
女教师
人数
6

4

 
现从这15名教师中随机选出2名,则2人恰好是教不同版本的女教师的概率是.且.
(1)求实数,的值
(2)培训活动现随机选出2名代表发言,设发言代表中使用人教B版的女教师人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

甲、乙两支排球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束。除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是。假设各局比赛结果相互独立。
(Ⅰ)分别求甲队以胜利的概率;
(Ⅱ)若比赛结果为求,则胜利方得分,对方得分;若比赛结果为,则胜利方得分、对方得分。求乙队得分的分布列及数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天

(Ⅰ)求此人到达当日空气重度污染的概率
(Ⅱ)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望.
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.

一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)

30
25

10
结算时间(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

“中国式过马路”存在很大的交通安全隐患.某调
查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路
人进行了问卷调查,得到了如下列联表:

 
男性
女性
合计
反感
10
 
 
不反感
 
8
 
合计
 
 
30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案