分析 由圆的方程,可知圆心(0,0),r=5,圆心到弦的距离$\sqrt{{5}^{2}-{4}^{2}}$=3,下面求圆心到直线的距离,分两种情况,一是若直线斜率不存在,则垂直x轴x=3,成立;若斜率存在,由圆心到直线距离$\frac{|-3k+6|}{\sqrt{{k}^{2}+1}}$=3求解.
解答 解:圆x2+y2=25的圆心(0,0),r=5
圆心到弦的距离$\sqrt{{5}^{2}-{4}^{2}}$=3
若直线斜率不存在,则垂直x轴
x=3,圆心到直线距离=|0-3|=3,成立
若斜率存在,y-6=k(x-3)即:kx-y-3k+6=0
则圆心到直线距离$\frac{|-3k+6|}{\sqrt{{k}^{2}+1}}$=3
解得k=$\frac{3}{4}$,直线方程为3x-4y+15=0.
综上:直线方程为x-3=0和3x-4y+15=0.
点评 本题主要考查直线与圆的位置关系,主要涉及了圆心距,弦半距及半径构成的直角三角形,直线的方程形式及其性质.
科目:高中数学 来源: 题型:选择题
| A. | ln(a-b)>0 | B. | $\frac{1}{a}<\frac{1}{b}$ | C. | 3a-b<1 | D. | loga2<logb2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{2\sqrt{13}}{13}$ | C. | $\frac{5\sqrt{13}}{26}$ | D. | $\frac{7\sqrt{13}}{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | b>a>c | C. | a>b>c | D. | c>a>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com