精英家教网 > 高中数学 > 题目详情
16.(1)求两条垂直的直线l1:2x+y+2=0与l2:ax+4y-2=0的交点坐标;
(2)求经过直线l1:x+3y-3=0与l2:x-y+1=0的交点且平行于直线l3:2x+y-3=0的直线l的方程.

分析 (1)根据两直线垂直,斜率之积等于-1,求出a=-2,把两直线的方程联立方程组求得交点的坐标.
(2)解方程组$\left\{\begin{array}{l}{x+3y-3=0}\\{x-y+1=0}\end{array}\right.$可得交点,可设平行于直线2x+y-3=0的直线方程为2x+y+c=0,代入点的坐标可得c值,可得直线方程.

解答 解:(1)由题意可得-2×(-$\frac{a}{4}$)=-1,∴a=-2.
两直线即2x+y+2=0与-2x+4y-2=0.
联立两直线方程,
 可得交点的坐标为(-1,0),
(2)联立方程组$\left\{\begin{array}{l}{x+3y-3=0}\\{x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴直线l1:x+3y-3=0与l2:x-y+1=0的交点为(0,1)
可设平行于直线2x+y-3=0的直线方程为2x+y+c=0,
1+c=0,解得c=-1,
∴所求直线的方程为:2x+y-1=0.

点评 本题考查直线的一般式方程,涉及直线的平行与垂直关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a3=3,a7=1,又数列{${\frac{1}{{1+{a_n}}}$}是等差数列,则a11等于(  )
A.1B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求过点(3,6)被圆x2+y2=25截得线段的长为8的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线l与椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1相切于点P,与直线x=4交于点Q,以PQ为直径的圆过定点M,则M必在直线(  )上.
A.x=0B.y=0C.y=1D.x=5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知|$\overrightarrow a$|=$\sqrt{10}$,$\overrightarrow a$•$\overrightarrow b$=-$\frac{{5\sqrt{30}}}{2}$,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=?-15,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下列函数中,在区间(0,+∞)上不是增函数的是④.
①y=2x②y=lgx③y=x3④y=$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知R为全集,A={x|log${\;}_{\frac{1}{2}}}$(3-x)≥-2},B={x|y=$\sqrt{{2^x}-1}$},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设集合A={1,2,3,4},B={2,5},求A∪B=(  )
A.{1,2,3,4,5}B.{2,5}C.{2,5,6,7}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简、求值:
(1)(2a${\;}^{\frac{1}{4}}$b-${\;}^{\frac{1}{3}}$)(-3a-${\;}^{\frac{1}{2}}$b${\;}^{\frac{2}{3}}$)÷(-$\frac{1}{4}$a-${\;}^{\frac{1}{4}}$b-${\;}^{\frac{2}{3}}$)
(2)(log43+log83)(log32+log92)-log${\;}_{\frac{1}{2}}$$\root{4}{32}$.

查看答案和解析>>

同步练习册答案