精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数是奇函数.
(1)求的值;
(2)证明函数的单调性.
(1);(2)见解析.

试题分析:(1)因为是定义在R上的奇函数,所以有,解得,再由,解得;(2)根据单调递减函数的定义证明:先由(1)写出函数的解析式,,然后取任意的,对化简得到,根据以及指数函数的性质可以判断,所以,即时,有,根据单调递减函数的定义可知,函数在全体实数R上是单调递减函数.
试题解析:(1)因为是定义在R上的奇函数,
所以,即,解得.                  2分
从而有.
又由知,,解得.           5分
(2)由(1)知,              7分
对于任意的,                          8分




              11分
所以在全体实数上为单调减函数.                    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数恒过定点 (3,2).
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式;
(3)对于定义在[1,9]的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)求的单调区间;
(2)如果是曲线上的任意一点,若以为切点的切线的斜率恒成立,求实数的最小值;
(3)讨论关于的方程的实根情况.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|

⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为的函数在区间上单调递减,并且函数为偶函数,则下列不等式关系成立的是(     )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:①;②是函数图像的一条对称轴;③函数在区间上单调递增;④若方程.在区间上有两根为,则。以上命题正确的是     。(填序号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,则实数a的取值范围是 (     )
A.a≤2B.5≤a≤7C.4≤a≤6D.a≤5或a≥7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的减函数,则满足的实数的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若实数满足,则的最大值为      

查看答案和解析>>

同步练习册答案