精英家教网 > 高中数学 > 题目详情
20.把函数g(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{3}$个单位长度得到函数y=f(x)的图象(如图).
(1)求函数g(x)的解析式;
(2)若g(x0)=-$\frac{11}{14}$,x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),求sin2x0的值.

分析 (1)根据三角函数的关系求出A,ω和φ的值即可,求函数g(x)的解析式;
(2)利用两角和差的正弦公式进行求解即可.

解答 解:(1)把函数g(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{3}$个单位长度得到函数y=f(x)的图象,
即f(x)=g(x+$\frac{π}{3}$)=Asin[ω(x+$\frac{π}{3}$)+φ]=Asin(ωx+$\frac{π}{3}$ω+φ),
由图象知函数的最大值为1,即A=1,
$\frac{T}{4}$=$\frac{7π}{12}-\frac{π}{3}$=$\frac{3π}{12}$,
即T=π,即T=$\frac{2π}{ω}$=π,则ω=2,
即f(x)=sin(2x+$\frac{2π}{3}$+φ),
∵f($\frac{7π}{12}$)=sin(2×$\frac{7π}{12}$+$\frac{2π}{3}$+φ)=-1,
∴2×$\frac{7π}{12}$+$\frac{2π}{3}$+φ=$\frac{3π}{2}$+2kπ,k∈Z,
即φ=-$\frac{π}{3}$+2kπ,
∵|φ|<$\frac{π}{2}$,
∴当k=0时,φ=-$\frac{π}{3}$,
即f(x)=sin(2x+$\frac{2π}{3}$-$\frac{π}{3}$)=sin(2x+$\frac{π}{3}$).
(2)由(1)知g(x)=sin(2x-$\frac{π}{3}$),
若g(x0)=-$\frac{11}{14}$,x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),
则sin(2x0-$\frac{π}{3}$)=-$\frac{11}{14}$,
∵x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),
∴2x0-$\frac{π}{3}$∈(π,$\frac{7π}{6}$),
则cos(2x0-$\frac{π}{3}$)=-$\sqrt{1-(-\frac{11}{14})^{2}}$=-$\frac{5\sqrt{3}}{14}$,
则sin2x0=sin(2x0-$\frac{π}{3}$+$\frac{π}{3}$)=sin(2x0-$\frac{π}{3}$)cos$\frac{π}{3}$+cos(2x0-$\frac{π}{3}$)sin$\frac{π}{3}$=-$\frac{11}{14}$×$\frac{1}{2}$+(-$\frac{5\sqrt{3}}{14}$)×$\frac{\sqrt{3}}{2}$=$-\frac{11}{28}$-$\frac{15}{28}$=$-\frac{13}{′14}$.

点评 本题主要考查三角函数解析式的求解,以及三角函数值的计算,利用两角和差的正弦公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sin2x+1 的周期为(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=ax-1的图象经过点(4,2),则函数g(x)=loga$\frac{1}{x+1}$的图象是④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.自点(2,3)作圆x2+y2-2y-4=0的切线,则切线长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.a∈R,则“a=1”是“直线ax-y+2=0与直线x-ay-1=0平行”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知11.2a=1000,0.0112b=1000,求$\frac{1}{a}$-$\frac{1}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$,若目标函数z=ax+by(a>0,b>0)的最大值为16,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,a6=10,S6=75,那么(  )
A.首项a1=-1,公差d=13B.首项a1=15,公差d=-1
C.首项a1=-3,公差d=2D.首项a1=3,公差d=-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若2x+3y+z=7,则x2+y2+z2的最小值为$\frac{7}{2}$.

查看答案和解析>>

同步练习册答案