精英家教网 > 高中数学 > 题目详情
10.若2x+3y+z=7,则x2+y2+z2的最小值为$\frac{7}{2}$.

分析 由条件利用柯西不等式(22+32+12)(x2+y2+z2)≥(2x+3y+z)2,求得x2+y2+z2的最小值.

解答 解:12+22+32=14,∴由柯西不等式可得(22+32+12)(x2+y2+z2)≥(2x+3y+z)2=72
∴x2+y2+z2≥$\frac{49}{14}$=$\frac{7}{2}$,即x2+y2+z2的最小值是$\frac{7}{2}$,
故答案为:$\frac{7}{2}$.

点评 本题主要考查了函数的最值,以及柯西不等式的应用,解题的关键是利用柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2,进行解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.把函数g(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象向左平移$\frac{π}{3}$个单位长度得到函数y=f(x)的图象(如图).
(1)求函数g(x)的解析式;
(2)若g(x0)=-$\frac{11}{14}$,x0∈($\frac{2π}{3}$,$\frac{3π}{4}$),求sin2x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow{m}$=(x,y),向量$\overrightarrow{v}$=(x+2y,tan$\frac{x}{2}$tany)的对应关系可用$\overrightarrow{v}$=f($\overrightarrow{m}$)表示,试求在向量$\overrightarrow{m}$=(α,β)(α,β∈(0,$\frac{π}{2}$)),使得f($\overrightarrow{m}$)=($\frac{2π}{3}$,2-$\sqrt{3}$)成立?如果存在,求$\overrightarrow{m}$,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在区间[-2,2]上随机取一个数x,使得|x|-|x-1|≥1成立的概率为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=2,AD=$\sqrt{2}$,CD=1,PA⊥平面ABCD,PA=2.
(Ⅰ)设平面PAB∩平面PCD=m,求证:CD∥m;
(Ⅱ)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为$\frac{\sqrt{2}}{2}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若f(n)=1+$\frac{1}{{\sqrt{2}}}$+$\frac{1}{{\sqrt{3}}}$+…+$\frac{1}{{\sqrt{n}}}$,n∈N,当n≥3时,证明:f(n)>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{1-\sqrt{x},x≥0}\\{{2}^{x},x<0}\end{array}\right.$,则f(f(4))=$\frac{1}{2}$,f(x)的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某商场为了提高利润决定进行广告促销,已知在没有进行广告促销之前的商场的利润为500万元,据推算每投入广告费x万元,则增加销售利润100-$\frac{100}{x+1}$万元.
(1)假设y为投入广告费x万元后商场得到的总利润,试求y与x之间的函数关系式;
(2)问广告投入为多少万元时,商场能获得利润最大?并求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在(0,+∞)上的单调递减函数,f′(x)是其导函数,若 $\frac{f(x)}{f′(x)}$>x,则下列不等关系成立的是(  )
A.f(2)<2f(1)B.3f(2)>2f(3)C.ef(e)<f(e2D.ef(e2)>f(e3

查看答案和解析>>

同步练习册答案