精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2
sin(2x-
π
4
)

(1)求函数的最小正周期和最大值;
(2)求函数的单调区间.
分析:利用正弦函数的周期公式以及单调性进行求解.
解答:解:
(1)最小正周期为:T=
2

sin(2x-
π
4
)
最大值为1
∴f(x)max=
2

(2)∵f(x)的单调增区间为2x-
π
4
∈[-
π
2
+2kπ,
π
2
+2kπ]
 k∈Z
即:x∈[-
π
8
+kπ,
π
8
+kπ]
   k∈Z
又∵f(x)的单调减区间为2x-
π
4
∈[
π
2
+2kπ,
2
+2kπ]
  k∈Z
即:x∈[
8
+kπ,
8
+kπ]
 k∈Z
点评:考察了三角函数的单调性以及周期,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案