精英家教网 > 高中数学 > 题目详情
14.已知数列{an}满足a1=1,an+an-1=${({\frac{1}{3}})^n}$(n≥2),Sn=a1•3+a2•32+…+an•3n,则4Sn-an•3n+1=$\left\{\begin{array}{l}{-5,}&{n=1}\\{n+2,}&{n≥2}\end{array}\right.$.

分析 利用Sn的表达式,求出3Sn的表达式,错位求和,化简可得所求表达式的结果.

解答 解:因为Sn=a1•3+a2•32+…+an•3n
所以3Sn=a1•32+a2•33+…+an•3n+1
所以4Sn=3a1+32(a1+a2)+33(a2+a3)+…+3n(an-1+an)+an•3n+1
所以4Sn-an•3n+1=3a1+32(a1+a2)+33(a2+a3)+…+3n(an-1+an),
又因为a1=1,an+an-1=${({\frac{1}{3}})^n}$(n≥2),
所以4Sn-an•3n+1=3+32•$\frac{1}{{3}^{2}}$+33$•\frac{1}{{3}^{3}}$+…+3n•$\frac{1}{{3}^{n}}$
=3+1+1+…+1=3+(n-1)=n+2(n≥2),
又因为当n=1时,4S1-a1•31+1=-5不满足上式,
所以4Sn-an•3n+1=$\left\{\begin{array}{l}{-5,}&{n=1}\\{n+2,}&{n≥2}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{-5,}&{n=1}\\{n+2,}&{n≥2}\end{array}\right.$.

点评 本题是中档题,考查数列求和的方法,考查计算能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.用斜二测画法画一个水平放置的正五角星的直观图,则正五角星的各个角不全等(填“相等”“不等”或“不全等”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知F1、F2分别为双曲线C:$\frac{x^2}{4}-\frac{y^2}{5}$=1的左、右焦点,P为双曲线C右支上一点,且|PF1|=2|PF2|,则△PF1F2外接圆的面积为(  )
A.$\frac{4π}{15}$B.$\frac{16π}{15}$C.$\frac{64π}{15}$D.$\frac{256π}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一个放置在水平桌面上的正四棱柱的俯视图如图所示,其中α为锐角,则该几何体的正视图的面积的最大值为(  )
A.2或3B.2$\sqrt{3}$或3C.1或3D.2或2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知结论“a1、a2∈R+,且a1+a2=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$≥4:若a1、a2、a3∈R+,且a1+a2+a3=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥9”,请猜想若a1、a2、…、an∈R+,且a1+a2+…+an=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积等于(  )
A.8+8πB.8+6πC.6+8πD.6+6π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知{an}为等差数列,Sn为其前n项和,若a1=8,a4+a6=0,则S8=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一个骰子连续投2 次,点数积大于21 的概率$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\overrightarrow a=({sin(ωx+φ),2})$,$\overrightarrow b=({1,cos(ωx+φ)})$,$(ω>0,0<φ<\frac{π}{4})$,函数$f(x)=(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)$,已知y=f(x)的图象的一个对称中心与它相邻的一条对称轴之间的距离为1,且经过点$M(1,\frac{7}{2})$
(Ⅰ)求函数f(x)的解析式
(Ⅱ)先将函数y=f(x)图象上各点的横坐标变为原来的π倍,纵坐标不变,再向右平移m(m>0)个单位长度,向下平移3个单位长度,得到函数y=g(x)的图象,若函数g(x)的图象关于原点对称,求实数m的最小值.

查看答案和解析>>

同步练习册答案