精英家教网 > 高中数学 > 题目详情
4.用斜二测画法画一个水平放置的正五角星的直观图,则正五角星的各个角不全等(填“相等”“不等”或“不全等”)

分析 根据斜二测画法的要点和步骤即可判断

解答 解:通过画水平放置的正五角星的直观图可知正五角星的各个角不全等,
故答案为:不全等.

点评 本题考查了平面图形直观图的画法,解答的关键是熟记斜二测画法的要点和步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,底面ABCD是∠DAB且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD.
(1)若G为AD的中点,求证:BG⊥平面PAD;
(2)求二面角A-BC-P的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\frac{π}{2}<A<π$,且sinA=$\frac{4}{5}$,那么sin2A等于(  )
A.$\frac{24}{25}$B.$\frac{7}{25}$C.$-\frac{12}{25}$D.$-\frac{24}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1}{2}$sin 2xsin φ+cos2xcos φ-$\frac{1}{2}$sin($\frac{π}{2}$+φ)(0<φ<π),其图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函数f(x)的单调增区间;
(3)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.当m为何实数时,复数z=m2+m-2+(m2-1)i为
(1)实数;(2)虚数;(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{-2x-1,x≤0}\end{array}\right.$,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x2+y2+2x+2y在D上的最小值为-$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2-(a+2)x+lnx,其中a∈R.
(Ⅰ)当a=1时,求曲线y=f(x)的点(1,f(1))处的切线方程;
(Ⅱ)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图为某几何体的三视图,则其体积为(  )
A.$\frac{14π}{6}+12$B.$\frac{11π}{3}+4$C.$\frac{11π}{6}+12$D.$\frac{11π}{3}+12$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足a1=1,an+an-1=${({\frac{1}{3}})^n}$(n≥2),Sn=a1•3+a2•32+…+an•3n,则4Sn-an•3n+1=$\left\{\begin{array}{l}{-5,}&{n=1}\\{n+2,}&{n≥2}\end{array}\right.$.

查看答案和解析>>

同步练习册答案