精英家教网 > 高中数学 > 题目详情
已知函数g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)当a∈R时,讨论函数f(x)的单调性.
(2)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x1-x2
>a
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
考点:利用导数研究函数的单调性
专题:函数的性质及应用,导数的综合应用
分析:(1)先根据条件求出f(x),要讨论f(x)的单调性,求导数即可,注意把导函数写成这样的形式:f′(x)=
(x-2)(x+a)
x
,这样便于讨论a判断单调性.
(2)先假设存在实数a,x1≠x2,所以可设x1<x2,由
f(x2)-f(x1)
x1-x2
能得到:f(x2)+ax2<f(x1)+ax1,根据单调性的定义,让函数f(x)+ax在(0,+∞)上是增函数,那就只要这个函数在(0,+∞)上的导数大于零即可.这样来寻找a是否存在即可.
解答: 解:(1)f′(x)=
(x-2)(x+a)
x
,f(x)的定义域为(0,+∞);
①当a>0时,f(x)在(0,2)上是减函数,在(2,+∞)上是增函数;
②当-2<a≤0时,f(x)在(0,-a)上是增函数;在(-a,2)是减函数;在(2,+∞)上是增函数;
③当a=-2时,f(x)在(0,+∞)上是增函数;
④当a<-2时,f(x)在(0,2)上是增函数;在(2,-a)上是减函数;在(-a,+∞)上是增函数. 
(2)假设存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x1-x2
>a
恒成立,不妨设0<x1<x2,要使
f(x2)-f(x1)
x1-x2
>a
,即f(x2)+ax2<f(x1)+ax.
令g(x)=f(x)+ax=
1
2
x2-2alnx-2x+2ax
,只要g(x)在(0,+∞)上为增函数.
g′(x)=x+2(a-1)-
2a
x
=
x2+2(a-1)x-2a
x
,所以只要x2+2(a-1)x-2a>0;
令x2+2(a-1)x-2a=0,∵△=4(a2+)>0,∴该方程有两个不相等实根,要使g(x)在(0,+∞)上为增函数,则:
-2(a-1)+
4(a-1)2+8a
2
=
a2+1
-(a-1)
≤0,∵
a2+1
>|a|>a-1
,所以
a2+1
-(a-1)>0

所以符合条件的a不存在.
点评:第一问利用求导数判断函数单调性,是判断函数单调性时常用方法,而要注意的是将求出的f′(x)写成因式乘积的形式,便于讨论f′(x)的符号.而第二问需注意的是,构造函数g(x)=f(x)+ax,让函数g(x)在(0,+∞)上单调递增即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到数据如表.预计在今后的销售中,销量与单价仍然服从
y
=bx+a( b=-20,a=
.
y
-b
.
x
)的关系,且该产品的成本是4元/件,为使工厂获得最大利润(利润=销售收入-成本),该产品的单价应定为(  )元.
单价x(元)88.28.48.68.89
销量y(件)908483807568
A、
31
4
B、8
C、
33
4
D、
35
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是不同的直线,α,β是不重合的平面,下列命题正确的是(  ):
A、若m∥α,则m平行于平面α内的任意一条直线
B、若α∥β,m?α,n?β,则m∥n
C、若α∥β,m?α,则m∥β.
D、若m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表:
晚上白天合计
男婴502575
女婴101525
合计6040100
(参考数据和公式见卷首)你认为婴儿的性别与出生时间有关系的把握为(  )
A、80%B、90%
C、95%D、97.5%

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式an
(2)设bn=
n
an
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是
2
3
,每次测试通过与否互相独立.
(Ⅰ)求该学生考上大学的概率.
(Ⅱ)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X,求X的分布列及X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)f(x)=(1+sinx)(1-4x)    
(2)f(x)=ln(x+1)-
x
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是长方形海域,其中AB=10海里,AD=10
2
海里.现有一架飞机在该海域失事,两艘海事搜救船在A处同时出发,沿直线AP、AQ向前联合搜索,且∠PAQ=
π
4
(其中P、Q分别在边BC、CD上),搜索区域为平面四边形APCQ围成的海平面.设∠PAB=θ,搜索区域的面积为S. 
(1)试建立S与tanθ的关系式,并指出tanθ的取值范围;
(2)求S的最大值,并指出此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(x-2m)2
lnx
(其中m为常数).
(Ⅰ)当m=0时,求函数f(x)的单调区间;
(Ⅱ)当0<m<
1
2
时,设函数f(x)的3个极值点为a,b,c,且a<b<c.证明:a+c>
2
e

查看答案和解析>>

同步练习册答案