精英家教网 > 高中数学 > 题目详情
求下列函数的导数
(1)f(x)=(1+sinx)(1-4x)    
(2)f(x)=ln(x+1)-
x
x+1
考点:导数的运算
专题:导数的概念及应用
分析:直接利用导数的乘除法则及基本初等函数的求导公式求解;
解答: 解:(1)f′(x)=(1+sinx)′(1-4x)+(1+sinx)(1-4x)′=cosx(1-4x)+(1+sinx)×(-4)=-4+cosx-4sinx-4xcosx.
(2)′f(x)=ln(x+1)′-(
x
x+1
)′=
1
x+1
-
1
(x+1)2
=
x
(x+1)2
点评:本题考查了导数的运算,考查了导数的运算法则及基本初等函数的导数公式,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x+2|-|x-1|,则f(x)的值域是(  )
A、(-3,3)
B、[-3,3]
C、[3,+∞)
D、[-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图程序运行结果为(  ) 
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1
6
x3+
1
2
(a-2)x2,h(x)=2alnx,f(x)=g′(x)-h(x).
(1)当a∈R时,讨论函数f(x)的单调性.
(2)是否存在实数a,对任意的x1,x2∈(0,+∞),且x1≠x2,都有
f(x2)-f(x1)
x1-x2
>a
恒成立,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(ωx+
π
3
),ω>0,x∈R,且以π为最小正周期.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知f(
α
2
-
π
6
)=
8
5
,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
kx3-k2x2+12x
,是否存在实数k,使函数在(1,2)上递减,在(2,+∞)上递增?若存在,求出所有k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足对任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)设数列{
1
anan+2
}的前n项和为Sn,不等式Sn
1
6
(a2-5a+8)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

淘宝卖家在某商品的所有买家中,随机选择男女买家各50位进行调查,他们的评分等级如下:
评分等级[0,1](1,2](2,3](3,4](4,5]
女(人数)28101812
男(人数)4919108
(Ⅰ)从评分等级为(3,4]的人中随机选2个人,求恰有1人是女性的概率;
(Ⅱ)规定:评分等级在[0,3]的为不满意该商品,在(3,5]的为满意该商品.完成下列2×2列联表并帮助卖家判断:能否在犯错误的概率不超过0.05的前提下认为满意该商品与性别有关系?
满意该商品不满意该商品总计
总计

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=|x-2|+|2x+1|,若不等式|2m+3|+|m-3|≥|m|•f(x)对任意m∈R且m≠0恒成立,求x的取值范围.
(2)对于x∈R,不等式|x-1|+|x-2|≥a2+b2+c2恒成立,试求a+2b+3c的最大值.

查看答案和解析>>

同步练习册答案