精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos(ωx+
π
3
),ω>0,x∈R,且以π为最小正周期.
(1)求f(0)的值;
(2)求f(x)的解析式;
(3)已知f(
α
2
-
π
6
)=
8
5
,求sinα的值.
考点:余弦函数的图象
专题:三角函数的求值
分析:(1)、(2)由函数的周期性求得ω=2,可得f(x)的解析式,从而求得f(0)的值.
(3)由f(x)的解析式以及f(
α
2
-
π
6
)=
8
5
求得cosα的值,再利用同角三角函数的基本关系求得sinα的值.
解答: 解:(1)∵函数f(x)=2cos(ωx+
π
3
),ω>0,x∈R,且以π为最小正周期,
ω
=π,求得ω=2,∴f(x)=2cos(2x+
π
3
),f(0)=2cos
π
3
=1.
(2)由(1)可得 f(x)=2cos(2x+
π
3
).
(3)∵f(
α
2
-
π
6
)=2cos(α-
π
3
+
π
3
)=2cosα=
8
5

∴cosα=
4
5
,∴sinα=±
1-cos2α
3
5
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,同角三角函数的基本关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=|6x+a|,若不等式f(x)≥2的解集为{x|x≥-
1
6
或x≤-
5
6
},则实数a的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数m满足0<m<4,则曲线
x2
12
-
y2
4-m
=1与曲线
x2
12-m
-
y2
4
=1的(  )
A、实半轴长相等
B、虚半轴长相等
C、离心率相等
D、焦距相等

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式an
(2)设bn=
n
an
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C成等差数列,sin2A,sin2B,sin2C也成等差数列,试判断这个三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)f(x)=(1+sinx)(1-4x)    
(2)f(x)=ln(x+1)-
x
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
,cosx),
b
=(cos2x,sinx),函数f(x)=
a
b
-
3
2

(1)求函数f(x)最大值,及取得最大值时对应的x值.
(2)若x∈[0,
π
4
],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
1
b
的一个特征值λ1=3及对应的一个特征向量
e1
=
.
1
1
.

(1)求a,b的值;
(2)求曲线C:x2+4xy+13y2=1在M对应的变换作用下的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过P(1,3)作两互相垂直的直线l1和l2,l1交x轴于点A,l2与y轴交于点B,求线段AB中点M的轨迹方程.

查看答案和解析>>

同步练习册答案