精英家教网 > 高中数学 > 题目详情
已知数列{an}满足对任意的n∈N*,都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
(1)求a1,a2的值;
(2)求数列{an}的通项公式;
(3)设数列{
1
anan+2
}的前n项和为Sn,不等式Sn
1
6
(a2-5a+8)对任意的正整数n恒成立,求实数a的取值范围.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由题设条件知a1=1.当n=2时,有a13+a23=(a1+a22,由此可知a2=2.
(2)由题意知,an+13=(a1+a2++an+an+12-(a1+a2++an2,由于an>0,所以an+12=2(a1+a2++an)+an+1.同样有an2=2(a1+a2++an-1)+an(n≥2),由此得an+12-an2=an+1+an.所以an+1-an=1.所以数列{an}是首项为1,公差为1的等差数列.
(3)由(2)知an=n,
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)
,再用裂项求和法能够推导出实数a的取值范围.
解答: 解:(1)∵数列{an}满足对任意的n∈N*
都有a13+a23+…+an3=(a1+a2+…+an2且an>0.
a13=a12,∵a1>0,解得a1=1.
1+a23=(1+a22,∵a2>0,解得a2=2.
(2)∵a13+a23+…+an3=(a1+a2+…+an2,①
∴a13+a23+…+an+13=(a1+a2+…+an+12,②
②-①,得:an+13=(a1+a2+…+an+1)2-(a1+a2+…+an2
∵an>0,∴an+12=2(a1+a2+…+an)+an+1,③
同理,an2=2(a1+a2+…+an-1)+an,n≥2,④
③-④,得an+12-an2=an+1+an
∴an+1-an=1,
∵a2-a1=1,∴当n≥1时有an+1-an=1,
∴{an}是首项为1,公差为1的等差数列,
∴an=n.
(3)
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

Sn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+
…+
1
n
-
1
n+2

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)

∵Sn+1-Sn=
1
(n+1)(n+3)
>0,
∴数列{Sn}单调递增.
∴(Snmin=S1=
1
3

∵Sn
1
6
(a2-5a+8)对任意的正整数n恒成立,
1
6
(a2-5a+8)
1
3
恒成立,
解得2<a<3.
∴实数a的取值范围(2,3).
点评:本题主要考查数列通项、求和与不等式等知识,考查化归与转化的数学思想方法,以及抽象概括能力、运算求解能力和创新意识
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

令P(x):ax2+3x+2>0,若对任意x∈R,P(x)是真命题,则实数a的取值范围是(  )
A、a>0
B、a>
9
8
C、a<0
D、a=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1≠0,2an=a1(1+Sn)(n∈N*),Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式an
(2)设bn=
n
an
,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导数
(1)f(x)=(1+sinx)(1-4x)    
(2)f(x)=ln(x+1)-
x
x+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
,cosx),
b
=(cos2x,sinx),函数f(x)=
a
b
-
3
2

(1)求函数f(x)最大值,及取得最大值时对应的x值.
(2)若x∈[0,
π
4
],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是长方形海域,其中AB=10海里,AD=10
2
海里.现有一架飞机在该海域失事,两艘海事搜救船在A处同时出发,沿直线AP、AQ向前联合搜索,且∠PAQ=
π
4
(其中P、Q分别在边BC、CD上),搜索区域为平面四边形APCQ围成的海平面.设∠PAB=θ,搜索区域的面积为S. 
(1)试建立S与tanθ的关系式,并指出tanθ的取值范围;
(2)求S的最大值,并指出此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵M=
1
b
的一个特征值λ1=3及对应的一个特征向量
e1
=
.
1
1
.

(1)求a,b的值;
(2)求曲线C:x2+4xy+13y2=1在M对应的变换作用下的新曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
1+2sin10°cos10°
sin170°+
1-sin2170°
;  
(2)
sin(θ-5π)cos(-
π
2
-θ)cos(8π-θ)
sin(θ-
2
)sin(-θ-4π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的极坐标方程为ρcos(θ-
π
3
)=-1,曲线C2的极坐标方程为ρ=2
2
cos(θ-
π
4
).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(1)求曲线C2的直角坐标方程;
(2)求曲线C2上的动点M到曲线C1的距离的最大值.

查看答案和解析>>

同步练习册答案