精英家教网 > 高中数学 > 题目详情
16.已知变量x与y的取值如下表:
x2356
y78-a9+a12
从散点图可以看出y对x呈现线性相关关系,则y与x的线性回归直线方程$\hat y=bx+a$必经过的定点为(4,9).

分析 由最小二乘法原理可知线性回归方程必经过数据中心($\overline{x},\overline{y}$).

解答 解:$\overline{x}$=$\frac{2+3+5+6}{4}$=4,$\overline{y}$=$\frac{7+(8-a)+(9+a)+12}{4}$=9,
∴线性回归方程必经过(4,9).
故答案为(4,9).

点评 本题考查了线性回归方程的特点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,PD=AD=1,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2)求D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点,过F2的直线l与椭圆交于A,B两点,求△F1AB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一座抛物线形拱桥,高水位时,拱顶离水面3m,水面宽2$\sqrt{6}$m,当水面上升1m后,水面宽4m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法求多项式f(x)=4x4+3x3+2x2+x+7的值,则f(2)的值为(  )
A.98B.105C.112D.119

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0).
(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为a,b,求双曲线C的离心率小于$\sqrt{5}$的概率;
(2)在区间[1,6]内取两个数依次记为a,b,求双曲线C的离心率小于$\sqrt{5}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=xm过点(2,$\frac{1}{2}$),则m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知a=20.3,$b={(\frac{1}{2})^{-0.4}}$,c=2log52,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)计算${(5\frac{1}{16})^{0.5}}-2×{(2\frac{10}{27})^{-\frac{2}{3}}}-2×{(\sqrt{2+π})^0}÷{(\frac{3}{4})^{-2}}$
(2)计算${9^{{{log}_3}2}}-4{log_4}3•{log_{27}}8+\frac{1}{3}{log_6}8-2{log_{{6^{-1}}}}\sqrt{3}$.

查看答案和解析>>

同步练习册答案