精英家教网 > 高中数学 > 题目详情
4.一座抛物线形拱桥,高水位时,拱顶离水面3m,水面宽2$\sqrt{6}$m,当水面上升1m后,水面宽4m.

分析 先建立平面直角坐标系,抛物线方程假设为:x2=-2py(p>0),再利用当拱顶离水面3米,水面宽2$\sqrt{6}$米,求出抛物线方程,进而可求水面上升1m后,水面宽度.

解答 解:建立如图所示的平面直角坐标系,则抛物线方程可假设为:x2=-2py(p>0),
∵当拱顶离水面3米,水面宽2$\sqrt{6}$米,
∴($\sqrt{6}$,-3)代入抛物线方程可得:6=6p,
∴2p=2,
∴抛物线方程为:x2=-2y.
如果水面上升1m,则令y=-2,
∴x=±2,
∴水面宽4m,
故答案为:4.

点评 本题考查抛物线的应用,考查待定系数法求抛物线的方程,解题的关键是正确建立平面直角坐标系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知ABCD是边长为2的正方形,EA⊥平面ABCD,FC∥EA,设EA=1
(Ⅰ)证明:EF⊥BD;
(Ⅱ)求点C到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),曲线C2的方程为x2+(y-4)2=16在与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1的极坐标方程;
(Ⅱ)若曲线θ=$\frac{π}{3}$(ρ>0)与曲线C1.C2交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方形ABCD边长为2,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结CF并延长交AB于点E.
(1)求证:点E为AB的中点;
(2)求EF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合D=$\left\{{(x,y)\left|{\frac{x^2}{4}+\frac{y^2}{3}=1}\right.}\right\}$,有下面四个命题:
p1:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$≥3        p2:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$<1
p3:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$<4        p4:?(x,y)∈D,$\sqrt{{{(x-1)}^2}+{y^2}}$≥2
其中的真命题是(  )
A.p1,p3B.p1,p4C.p2,p3D.p2,p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,log2x=2015,则¬p为(  )
A.?x∉R,log2x=2015B.?x∈R,log2x≠2015
C.?x0∈R,log2x0=2015D.?x0∈R,log2x0≠2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知变量x与y的取值如下表:
x2356
y78-a9+a12
从散点图可以看出y对x呈现线性相关关系,则y与x的线性回归直线方程$\hat y=bx+a$必经过的定点为(4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设F1、F2分别是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{7}$=1的左、右焦点.若点P在椭圆上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则|$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知命题p:?x<1,都有log${\;}_{\frac{1}{3}}}$x<0,命题q:?x∈R,使得x2≥2x成立,则下列命题是真命题的是(  )
A.p∨qB.(¬p)∧(¬q)C.p∨(¬q)D.p∧q

查看答案和解析>>

同步练习册答案