精英家教网 > 高中数学 > 题目详情
12.如图,正方形ABCD边长为2,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结CF并延长交AB于点E.
(1)求证:点E为AB的中点;
(2)求EF的值.

分析 (1)推导出EA为圆D的切线,且EB是圆O的切线,由此利用切割线定理能证明AE=EB.
(2)在Rt△BCE中,由射影定理得BE2=EF•EC,即可得到要求的线段.

解答 (1)证明:由以D为圆心DA为半径作圆,而ABCD为正方形,
∴EA为圆D的切线
依据切割线定理得EA2=EF•EC…(2分)
∵圆O以BC为直径,∴EB是圆O的切线,
同样依据切割线定理得EB2=EF•EC…(2分)
故AE=EB…(5分)
所以点E为AB的中点
(2)解:连结BF,∵BC为圆O的直径,∴BF⊥EC
又在Rt△BCE中,由射影定理得BE2=EF•EC
所以$EF=\frac{{B{E^2}}}{EC}=\frac{1}{{\sqrt{5}}}=\frac{{\sqrt{5}}}{5}$…(10分)

点评 本题考查切割线定理,考查射影定理,是一个中档题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.将3个半径为1的球和一个半径为$\sqrt{2}-1$的球叠为两层放在桌面上,上层只放一个较小的球,四个球两两相切,那么上层小球的最高点到桌面的距离是(  )
A.$\frac{{3\sqrt{2}+\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}+2\sqrt{6}}}{3}$C.$\frac{{\sqrt{2}+2\sqrt{6}}}{3}$D.$\frac{{2\sqrt{2}+\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F在x轴上,D为短轴上一个端点,且△DOF的内切圆的半径为$\frac{\sqrt{3}-1}{2}$,离心率e是方程2x2-5x+2=0的一个根.
(1)求椭圆C的方程;
(2)设过原点的直线与椭圆C交于A,B两点,过椭圆C的右焦点作直线l∥AB交椭圆C于M,N两点,是否存在常数λ,使得|AB|2=λ|MN|?若存在,请求出λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义2×2矩阵$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若f(x)=$|\begin{array}{l}{co{s}^{2}x-si{n}^{2}x}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{1}\end{array}|$,则f(x)的图象向右平移$\frac{π}{3}$个单位得到函数g(x),则函数g(x)的解析式为(  )
A.图象关于(π,0)中心对称B.图象关于直线x=$\frac{π}{2}$对称
C.g(x)是周期为π的奇函数D.在区间[-$\frac{π}{6}$,0]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设F1、F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的左右焦点,过F2的直线l与椭圆交于A,B两点,求△F1AB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.一座抛物线形拱桥,高水位时,拱顶离水面3m,水面宽2$\sqrt{6}$m,当水面上升1m后,水面宽4m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0).
(1)有一枚质地均匀的正四面体玩具,玩具的各个面上分别写着数字1,2,3,4.若先后两次投掷玩具,将朝下的面上的数字依次记为a,b,求双曲线C的离心率小于$\sqrt{5}$的概率;
(2)在区间[1,6]内取两个数依次记为a,b,求双曲线C的离心率小于$\sqrt{5}$的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知焦点在x轴上的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{9}$=1的离心率e=$\frac{1}{2}$,则实数m=12.

查看答案和解析>>

同步练习册答案