精英家教网 > 高中数学 > 题目详情
17.“点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

分析 根据充分条件和必要条件的定义进行判断即可.

解答 解:设动点P(x,y),则它到两坐标轴x,y距离的分别为|y|,|x|,
∴到两坐标轴距离相等的点的轨迹方程是|x|=|y|,即y=±|x|,
“点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的充分不必要条件,
故选:A.

点评 本题主要考查充分条件和必要条件的判断,根据点到坐标轴距离相等的条件求出对应的关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图所示,三棱锥D-ABC中,AC,BC,CD两两垂直,AC=CD=1,$BC=\sqrt{3}$,点O为AB中点.
(Ⅰ)若过点O的平面α与平面ACD平行,分别与棱DB,CB相交于M,N,在图中画出该截面多边形,并说明点M,N的位置(不要求证明);
(Ⅱ)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知F1•F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,其中F2与抛物线y2=12x的焦点重合,M是两曲线的一个交点,且有cos∠MF1F2•cos∠MF2F1=$\frac{7}{23}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{\sqrt{3}}{2}$,点(0,$\sqrt{2}$)是椭圆与y轴的一个交点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于是第一象限,A,B是椭圆上位于直线x=2两侧的动点;
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的取值范围;
②当点A,B在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值?若是,求出此定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,正方形ABCD边长为2,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结CF并延长交AB于点E.
(1)求证:点E为AB的中点;
(2)求EF的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C交于A,B两点,点N是定直线x=-2上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3
(Ⅰ) 求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ) 试探求k1,k2,k3之间的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,log2x=2015,则¬p为(  )
A.?x∉R,log2x=2015B.?x∈R,log2x≠2015
C.?x0∈R,log2x0=2015D.?x0∈R,log2x0≠2015

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=$\sqrt{2}$sin3x的图象,可以将函数y=$\sqrt{2}$sin(3x+$\frac{π}{2}$)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{2}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{2}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式|x+3|+|x-1|<a2-3a有解的实数a的取值范围是(  )
A.(-∞,-1)∪(4,+∞)B.(-1,4)C.(-∞,-4)∪(1,+∞)D.(-4,1)

查看答案和解析>>

同步练习册答案