精英家教网 > 高中数学 > 题目详情
5.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{\sqrt{3}}{2}$,点(0,$\sqrt{2}$)是椭圆与y轴的一个交点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于是第一象限,A,B是椭圆上位于直线x=2两侧的动点;
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的取值范围;
②当点A,B在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值?若是,求出此定值,若不是,说明理由.

分析 (1)设椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,由椭圆性质求出a,b,由此能求出椭圆C的方程.
(2)①设A(x1,y1),B(x2,y2),直线AB的方程为$y=\frac{1}{2}x+t$,与椭圆联立,得x2+2tx+2t2-4=0,由此利用韦达定理、弦长公式求出四边形APBQ面积的取值范围.
②当∠APQ=∠BPQ时,设直线PA的方程为y-1=k(x-2),则直线PB的方程为y-1=-k(x-2),分别与椭圆方程联立,利用韦达定理能求出直线AB的斜率为定值$\frac{1}{2}$.

解答 解:(1)设椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
由题意可知,$b=\sqrt{2}$,$\frac{c}{a}=\frac{{\sqrt{3}}}{2},{a^2}={b^2}+{c^2}$,解得,$a=2\sqrt{2}$,…(3分)
∴椭圆C的方程为$\frac{x^2}{8}+\frac{y^2}{2}=1$.…(4分)
(2)①设A(x1,y1),B(x2,y2),直线AB的方程为$y=\frac{1}{2}x+t$,
联立$\left\{{\begin{array}{l}{\frac{x^2}{8}+\frac{y^2}{2}=1}\\{y=\frac{1}{2}x+t}\end{array}}\right.$,消y可得,2x2+4tx+4t2-8=0,即x2+2tx+2t2-4=0,
则有${x_1}+{x_2}=-2t,{x_1}{x_2}=2{t^2}-4$,…(6分)
对于$\frac{x^2}{8}+\frac{y^2}{2}=1$,令x=2,得P(2,1),Q(2,-1),
将P,Q分别代入直线可得,t=0,t=-2,
由点A,B在直线x=2的两侧,故-2<t<0,
四边形APBQ的面积为:
$S={S_{△APQ}}+{S_{△BPQ}}=\frac{1}{2}|PQ|•|{x_2}-{x_1}|$
=$\frac{1}{2}×2×|{x_2}-{x_1}|=\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\sqrt{4{t^2}-4(2{t^2}-4)}=\sqrt{-4{t^2}+16}$,
而-2<t<0,所以,0<S四边形APBQ<4.…(9分)
②当∠APQ=∠BPQ时,直线PA,PB的斜率之和为0,
不妨设直线PA的斜率为k,则直线PB的斜率为-k,
所以直线PA的方程为y-1=k(x-2),即kx-y+1-2k=0,
联立$\left\{{\begin{array}{l}{kx-y+1-2k=0}\\{\frac{x^2}{8}+\frac{y^2}{2}=1}\end{array}}\right.$,消y可得,(1+4k2)x2+8k(1-2k)x+4(1-2k)2-8=0,
所以${x_1}+2=\frac{8k(2k-1)}{{1+4{k^2}}}$,…(11分)
同理直线PB的方程为y-1=-k(x-2)
可得,${x_2}+2=\frac{-8k(-2k-1)}{{1+4{k^2}}}=\frac{8k(2k+1)}{{1+4{k^2}}}$,…(12分)
所以${x_1}+{x_2}=\frac{{16{k^2}-4}}{{1+4{k^2}}},{x_1}-{x_2}=\frac{-16k}{{1+4{k^2}}}$,
故${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{k({x_1}-2)+1+k({x_2}-2)-1}}{{{x_1}-{x_2}}}$=$\frac{{k({x_1}+{x_2})-4k}}{{{x_1}-{x_2}}}=\frac{{k•\frac{{16{k^2}-4}}{{1+4{k^2}}}-4k}}{{\frac{-16k}{{1+4{k^2}}}}}=\frac{1}{2}$,
∴直线AB的斜率为定值$\frac{1}{2}$.…(14分)

点评 本题考查椭圆方程的求法,考查四边形面积的取值的求法,考查直线的斜率是否为定值的判断与求法,是中档题,解题时要认真审题,注意韦达定理、弦长公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在正方体ABCD-A1B1C1D1中,P为对角线BD1上靠近B的三等分点,P到各顶点的距离的不同取值有(  )
A.3个B.4个C.5个D.6个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,A,B分别为左、右顶点,F2为其右焦点,P是椭圆C上异于A,B的动点,且$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为-2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过左焦点F1的直线交椭圆于M,N两点,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.因式分解:x3-2x2+x-2=(x-2)(x2+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义2×2矩阵$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若f(x)=$|\begin{array}{l}{co{s}^{2}x-si{n}^{2}x}&{\sqrt{3}}\\{cos(\frac{π}{2}+2x)}&{1}\end{array}|$,则f(x)的图象向右平移$\frac{π}{3}$个单位得到函数g(x),则函数g(x)的解析式为(  )
A.图象关于(π,0)中心对称B.图象关于直线x=$\frac{π}{2}$对称
C.g(x)是周期为π的奇函数D.在区间[-$\frac{π}{6}$,0]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在原点,右准线的方程为:x=4,左焦点是F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|$\overrightarrow{MQ}$|=2|$\overrightarrow{QF}$|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,直线x=m与抛物线x2=4y交于点A,与圆(y-1)2+x2=4的实线部分(即在抛物线开口内的圆弧)交于点B,F为抛物线的焦点,则△ABF的周长的取值范围是(  )
A.(2,4)B.(4,6)C.[2,4]D.[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)={log_a}(\sqrt{{x^2}+1}+x)$.
(1)判断并证明f(x)的奇偶性;
(2)若两个函数F(x)与G(x)在闭区间[p,q]上恒满足|F(x)-G(x)|>2,则称函数F(x)与G(x)在闭区间[p,q]上是分离的.是否存在实数a使得y=f(x)的反函数y=f-1(x)与g(x)=ax在闭区间[1,2]上分离?若存在,求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案