精英家教网 > 高中数学 > 题目详情
13.因式分解:x3-2x2+x-2=(x-2)(x2+1).

分析 分组提取公因式即可得出.

解答 解:原式=x2(x-2)+(x-2)=(x-2)(x2+1).
故答案为:(x-2)(x2+1).

点评 本题考查了分组提取公因式法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,M为侧棱PD的三等分点(靠近D点),O为AC,BD的交点,且PO⊥面ABCD,PO=$\sqrt{6}$.
(1)若在棱PD上存在一点N,且BN∥面AMC,确定点N的位置,并说明理由;
(2)求点B到平面MAC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,在四面体ABCD中,AB⊥BD,CD⊥DB,若AB与CD所成的角的大小为60°,则二面角C-BD-A的大小为(  )
A.60°或90°B.60°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{4}$+y2=1,过它的左焦点引倾斜角为$\frac{π}{3}$的弦PQ,则PQ中点坐标为(-$\frac{12\sqrt{3}}{13}$,$\frac{3}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知F1•F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,其中F2与抛物线y2=12x的焦点重合,M是两曲线的一个交点,且有cos∠MF1F2•cos∠MF2F1=$\frac{7}{23}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=10,则S${\;}_{△P{F}_{1}{F}_{2}}$=24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在原点,焦点在x轴上的椭圆C的离心率为$\frac{\sqrt{3}}{2}$,点(0,$\sqrt{2}$)是椭圆与y轴的一个交点.
(1)求椭圆C的方程;
(2)直线x=2与椭圆交于P,Q两点,P点位于是第一象限,A,B是椭圆上位于直线x=2两侧的动点;
①若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的取值范围;
②当点A,B在椭圆上运动,且满足∠APQ=∠BPQ时,直线AB的斜率是否为定值?若是,求出此定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C交于A,B两点,点N是定直线x=-2上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3
(Ⅰ) 求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ) 试探求k1,k2,k3之间的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(log227)•(log34)=(  )
A.$\frac{1}{6}$B.2C.3D.6

查看答案和解析>>

同步练习册答案