精英家教网 > 高中数学 > 题目详情
2.已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C交于A,B两点,点N是定直线x=-2上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3
(Ⅰ) 求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ) 试探求k1,k2,k3之间的关系,并给出证明.

分析 (Ⅰ)设A(x1,y1),B(x2,y2),由 $\left\{\begin{array}{l}x=ny+2\\{y^2}=x\end{array}\right.$可得y2-ny-2=0,再由韦达定理得$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ)三条直线AN,MN,BN的斜率成等差数列,证明k1+k3=2k2即可.

解答 解:(Ⅰ)设A(x1,y1)、B(x2,y2
由 $\left\{\begin{array}{l}x=ny+2\\{y^2}=x\end{array}\right.$可得  y2-ny-2=0
由韦达定理可得  y1+y2=n,y1y2=-2…(3分)
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=y12y22+y1y2=4-2=2,…(5分)
(Ⅱ)当n=0时,A(2,$\sqrt{2}$)、$B(2,-\sqrt{2})$
不妨取N(-2,2),则k1=$\frac{2-\sqrt{2}}{-4}$,k2=$\frac{2}{-4}$,k3=$\frac{2+\sqrt{2}}{-4}$
易得k1+k3=2k2. …(7分)
设N(-2,y0),k2=-$\frac{{y}_{0}}{4}$
k1+k3=$\frac{{y}_{1}-{y}_{0}}{{x}_{1}+2}$+$\frac{{y}_{2}-{y}_{0}}{{x}_{2}+2}$=$\frac{{2n{y_1}{y_2}+(4-n{y_0})({y_1}+{y_2})-8{y_0}}}{{{n^2}{y_1}{y_2}+4n({y_1}+{y_2})+16}}$=$\frac{-4n+(4-n{y}_{0})n-8{y}_{0}}{-2{n}^{2}+4{n}^{2}+16}$=-$\frac{{y}_{0}}{2}$=2k2
∴k1+k3=2k2,k1,k2,k3成等差数列. …(12分)

点评 本题考查直线和圆锥曲线的位置关系,考查向量知识的运用,考查韦达定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠ABC=90°,AB=4,AA1=6,点M时BB1中点.
(1)求证;平面A1MC⊥平面AA1C1C;
(2)求点A到平面A1MC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.因式分解:x3-2x2+x-2=(x-2)(x2+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆的中心在原点,右准线的方程为:x=4,左焦点是F(-1,0).
(Ⅰ)求椭圆的方程;
(Ⅱ)设Q是椭圆上一点,过F,Q的直线l与y轴交于点M,若|$\overrightarrow{MQ}$|=2|$\overrightarrow{QF}$|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=2px上一点$A({\frac{1}{2},a})$到焦点F距离为1,
(1)求抛物线C的方程;
(2)直线l过点(0,2)与抛物线交于M,N两点,若OM⊥ON,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,直线x=m与抛物线x2=4y交于点A,与圆(y-1)2+x2=4的实线部分(即在抛物线开口内的圆弧)交于点B,F为抛物线的焦点,则△ABF的周长的取值范围是(  )
A.(2,4)B.(4,6)C.[2,4]D.[4,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在区间(0,+∞)上的函数f(x)满足f($\frac{{x}_{1}}{{x}_{2}}$)=f(x1)-f(x2).
(1)求f(1)的值;
(2)若当x>1时,有f(x)<0.求证:f(x)为单调递减函数;
(3)在(2)的条件下,若f(5)=-1,求f(x)在[3,25]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a$,$\vec b$的夹角为120°,且$|\vec a|=2$,$|\vec b|=1$,$|{\vec a+2\vec b}|$=(  )
A.$\sqrt{2}$B.$\sqrt{7}$C.7D.2

查看答案和解析>>

同步练习册答案