精英家教网 > 高中数学 > 题目详情
7.已知抛物线C:y2=2px上一点$A({\frac{1}{2},a})$到焦点F距离为1,
(1)求抛物线C的方程;
(2)直线l过点(0,2)与抛物线交于M,N两点,若OM⊥ON,求直线的方程.

分析 (1)利用抛物线的定义建立方程,求出p,即可求出抛物线C的方程;
(2)联立$\left\{\begin{array}{l}y=kx+2\\{y^2}=2x\end{array}\right.$得ky2-2y+4=0,利用OM⊥ON,$\overrightarrow{OM}•\overrightarrow{ON}=0$,即x1•x2+y1•y2=0,求出k,即可求直线的方程.

解答 解:(1)依据抛物线的定义知:A到抛物线焦点F的距离为$AF=\frac{1}{2}+\frac{p}{2}=1$,
所以p=1,抛物线的方程为y2=2x;---------(5分)
(2)依题意,直线l的方程设为y=kx+2(k≠0),M(x1,y1),N(x2,y2),
联立$\left\{\begin{array}{l}y=kx+2\\{y^2}=2x\end{array}\right.$得ky2-2y+4=0,
由△=4-16k>0,得$k<\frac{1}{4}$;${y_1}{y_2}=\frac{4}{k}$--------(7分)
∵OM⊥ON,∴$\overrightarrow{OM}•\overrightarrow{ON}=0$,即x1•x2+y1•y2=0---------(9分)
∴$\frac{{{{({{y_1}{y_2}})}^2}}}{4}+{y_1}{y_2}=0$,即$\frac{16}{{4{k^2}}}+\frac{4}{k}=0$,解得k=-1---------(11分)
所以直线l的方程为y=-x+2,即x+y-2=0---------1(2分)

点评 此题主要考查直线与抛物线相交后的一系列问题,其中涉及到韦达定理的考查,在交点问题的求法中应用很广泛,需要理解记忆.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为$\sqrt{3}$x+y=0,则其离心率e=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.椭圆$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=10,则S${\;}_{△P{F}_{1}{F}_{2}}$=24.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=x(x-c)2在x=2处有极小值,则实数c的值为(  )
A.2B.2或6C.6D.4或6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y2=x,过点M(2,0)作直线l:x=ny+2与抛物线C交于A,B两点,点N是定直线x=-2上的任意一点,分别记直线AN,MN,BN的斜率为k1,k2,k3
(Ⅰ) 求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ) 试探求k1,k2,k3之间的关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行如图的程序后,输出的结果为(  )
A.$\frac{53}{60}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为200.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:
(1)求体重在[60,65)内的频率,并补全频率分布直方图;
(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?
(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.读程序,输出的结果是209.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2016)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.$-ln(e+\frac{1}{4})$

查看答案和解析>>

同步练习册答案