精英家教网 > 高中数学 > 题目详情
17.设定义在R上的偶函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),且x∈[0,1]时,f(x)=-ln(x2+e),则f(2016)的值等于(  )
A.-ln(e+1)B.-ln(4+e)C.-1D.$-ln(e+\frac{1}{4})$

分析 由已知得f(2+t)=f(2-2-t)=f(-t)=f(t),由此利用x∈[0,1]时,f(x)=-ln(x2+e),能求出f(2016).

解答 解:∵定义在R上的奇函数y=f(x),满足对任意t∈R都有f(t)=f(2-t),
∴f(2+t)=f(2-2-t)=f(-t)=f(t),
∵x∈[0,1]时,f(x)=-ln(x2+e),
∴f(2016)=f(1008×2)=f(0)=-lne=-1.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知抛物线C:y2=2px上一点$A({\frac{1}{2},a})$到焦点F距离为1,
(1)求抛物线C的方程;
(2)直线l过点(0,2)与抛物线交于M,N两点,若OM⊥ON,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x+tanx+1,若f(a)=2,则f(-a)的值为(  )
A.0B.-1C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设A,B是椭圆$\frac{{x}^{2}}{2}$+y2=1上的两个动点,O是坐标原点,且AO⊥BO,作OP⊥AB,垂足为P,则|OP|=(  )
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知向量$\vec a$,$\vec b$的夹角为120°,且$|\vec a|=2$,$|\vec b|=1$,$|{\vec a+2\vec b}|$=(  )
A.$\sqrt{2}$B.$\sqrt{7}$C.7D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,点P(0,1)在短轴CD上,且$\overrightarrow{PC}\overrightarrow{•PD}=-1$.
(I)求出椭圆E的方程;
(Ⅱ)过点P的直线l和椭圆E交于A,B两点.
(i)若$\overrightarrow{PB}=\frac{1}{2}\overrightarrow{AP}$,求直线l的方程;
(ii)已知点Q(0,2),证明对于任意直线l,$\frac{{\left|{QA}\right|}}{{\left|{QB}\right|}}=\frac{{\left|{PA}\right|}}{{\left|{PB}\right|}}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.我们把由半椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(x>0)与半椭圆$\frac{{y}^{2}}{{b}^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(x<0)合成的曲线称作“果圆”(其中a2=b2+c2,a>b>c>0).如图,设点F0,F1,F2是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是腰长为1的等腰直角三角形,则a,b的值分别为(  )
A.5,4B.$\frac{{\sqrt{7}}}{2},1$C.$1,\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{2},1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知F是椭圆C:$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1的右焦点,P是C上一点,A(-2,1),当△APF周长最小时,其面积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=$\frac{x^2}{4}$的焦点为F,点P在抛物线上,点O为坐标原点,若|PF|=5,则|PO|等于(  )
A.6B.5$\sqrt{2}$C.5D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案