16£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬A£¬B·Ö±ðΪ×ó¡¢ÓÒ¶¥µã£¬F2ΪÆäÓÒ½¹µã£¬PÊÇÍÖÔ²CÉÏÒìÓÚA£¬BµÄ¶¯µã£¬ÇÒ$\overrightarrow{PA}$•$\overrightarrow{PB}$µÄ×îСֵΪ-2£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô¹ý×ó½¹µãF1µÄÖ±Ïß½»ÍÖÔ²ÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʵõ½a£¬bµÄ¹ØÏµ£¬ÔÙÓÉ$\overrightarrow{PA}$•$\overrightarrow{PB}$µÄ×îСֵΪ-2ÇóµÃaµÄÖµ£¬Ôòb¿ÉÇó£¬ÍÖÔ²·½³Ì¿ÉÇó£»
£¨2£©ÓÉ£¨1£©ÖªF1£¨-$\sqrt{2}$£¬0£©£¬F2£¨$\sqrt{2}$£¬0£©£¬ÔòбÂʲ»´æÔÚʱ£¬ÓÃ×ø±ê·Ö±ð±íʾ³ö$\overrightarrow{{F}_{2}M}$£¬$\overrightarrow{{F}_{2}N}$µÄ£¬Ö±½ÓÇóµÃ$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$£»Ö±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x+$\sqrt{2}$£©£¬´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬ÏûÈ¥yµÃ£¨1+2k2£©x2+4$\sqrt{2}$k2x+4£¨k2-1£©=0£®ÀûÓøùÓëϵÊýµÄ¹ØÏµÇóµÃM£¬NµÄºá×Ý×ø±êµÄ»ý£¬°Ñ$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$ת»¯ÎªM£¬NµÄºá×ø±êµÄºÍÓë»ýµÄÐÎʽ£¬´úÈëºó»¯Îª¹ØÓÚkµÄº¯ÊýʽµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâÖª£¬$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬¼´$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{2}$£¬
¡à$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}=\frac{1}{2}$£¬Ôòa2=2b2£¬
ÉèP£¨x£¬y£©£¬
¡ß$\overrightarrow{PA}$•$\overrightarrow{PB}$=£¨-a-x£¬-y£©•£¨a-x£¬-y£©=x2-a2+y2=${x}^{2}-{a}^{2}+\frac{{a}^{2}}{2}-\frac{{x}^{2}}{2}=\frac{1}{2}£¨{x}^{2}-{a}^{2}£©$£¬
¡ß-a¡Üx¡Üa£¬¡àµ±x=0ʱ£¬$£¨\overrightarrow{PA}•\overrightarrow{PB}£©_{min}=-\frac{{a}^{2}}{2}=-2$£¬
¡àa2=4£¬Ôòb2=2£®
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉa2=4£¬b2=2£¬µÃc=$\sqrt{{a}^{2}-{b}^{2}}=\sqrt{2}$£¬
¡à${F}_{1}£¨-\sqrt{2}£¬0£©£¬{F}_{2}£¨\sqrt{2}£¬0£©$£®
ÔòÖ±ÏßбÂʲ»´æÔÚʱ£¬
M£¨-$\sqrt{2}$£¬1£©£¬N£¨-$\sqrt{2}$£¬-1£©£¬ÓÚÊÇ$\overrightarrow{{F}_{2}M}$=£¨-2$\sqrt{2}$£¬1£©£¬$\overrightarrow{{F}_{2}N}$=£¨-2$\sqrt{2}$£¬-1£©£¬
¡à$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=7£»
Ö±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßMNµÄ·½³ÌΪy=k£¨x+$\sqrt{2}$£©£¬´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£¬ÏûÈ¥yµÃ
£¨1+2k2£©x2+4$\sqrt{2}$k2x+4£¨k2-1£©=0£®
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò${x}_{1}+{x}_{2}=-\frac{4\sqrt{2}{k}^{2}}{1+2{k}^{2}}£¬{x}_{1}{x}_{2}=\frac{4£¨{k}^{2}-1£©}{1+2{k}^{2}}$£¬
¡ß$\overrightarrow{{F}_{2}M}=£¨{x}_{1}-\sqrt{2}£¬{y}_{1}£©£¬\overrightarrow{{F}_{2}N}=£¨{x}_{2}-\sqrt{2}£¬{y}_{2}£©$£¬
¡à$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=${x}_{1}{x}_{2}-\sqrt{2}£¨{x}_{1}+{x}_{2}£©+2+{k}^{2}£¨{x}_{1}+\sqrt{2}£©£¨{x}_{2}+\sqrt{2}£©$
=$£¨1+{k}^{2}£©{x}_{1}{x}_{2}+£¨\sqrt{2}{k}^{2}-\sqrt{2}£©£¨{x}_{1}+{x}_{2}£©$+2k2+2
=$£¨1+{k}^{2}£©\frac{4£¨{k}^{2}-1£©}{1+2{k}^{2}}+\sqrt{2}£¨{k}^{2}-1£©•\frac{-4\sqrt{2}{k}^{2}}{1+2{k}^{2}}+2{k}^{2}+2$
=7-$\frac{9}{1+2{k}^{2}}$£®
¡ß1+2k2¡Ý1£¬¡à0£¼$\frac{1}{1+2{k}^{2}}$¡Ü1£¬
¡à7-$\frac{9}{1+2{k}^{2}}$¡Ê[-2£¬7£©£¬
×ÛÉÏÖª£¬$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$¡Ê[-2£¬7]£®

µãÆÀ ±¾ÌâÒÔÏòÁ¿ÎªÔØÌ壬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ý£¬¿¼²éÔËËãÄÜÁ¦£¬½âÌâʱӦעÒâ·ÖÀàÌÖÂÛ£¬Í¬Ê±ÕýÈ·ÓÃ×ø±ê±íʾÏòÁ¿£¬ÊÇÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª¡÷ABCÖУ¬¡ÏC=$\frac{¦Ð}{2}$£¬¡ÏB=$\frac{¦Ð}{6}$£¬AC=2£¬MΪABÖе㣬½«¡÷CBMÑØCMÕÛÆð£¬Ê¹¶þÃæ½ÇB-CM-AµÄ´óСΪ$\frac{¦Ð}{3}$£¬ÔòAB=$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬ÈýÀâ×¶D-ABCÖУ¬AC£¬BC£¬CDÁ½Á½´¹Ö±£¬AC=CD=1£¬$BC=\sqrt{3}$£¬µãOΪABÖе㣮
£¨¢ñ£©Èô¹ýµãOµÄÆ½Ãæ¦ÁÓëÆ½ÃæACDƽÐУ¬·Ö±ðÓëÀâDB£¬CBÏཻÓÚM£¬N£¬ÔÚͼÖл­³ö¸Ã½ØÃæ¶à±ßÐΣ¬²¢ËµÃ÷µãM£¬NµÄλÖ㨲»ÒªÇóÖ¤Ã÷£©£»
£¨¢ò£©ÇóµãCµ½Æ½ÃæABDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬ÔÚËÄÃæÌåABCDÖУ¬AB¡ÍBD£¬CD¡ÍDB£¬ÈôABÓëCDËù³ÉµÄ½ÇµÄ´óСΪ60¡ã£¬Ôò¶þÃæ½ÇC-BD-AµÄ´óСΪ£¨¡¡¡¡£©
A£®60¡ã»ò90¡ãB£®60¡ãC£®60¡ã»ò120¡ãD£®30¡ã»ò150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Éèa£¬b£¬cΪÕýÊý£¬ÇóÖ¤£º2£¨$\frac{{a}^{2}}{b+c}$+$\frac{{b}^{2}}{c+a}$+$\frac{{c}^{2}}{a+b}$£©¡Ý$\frac{{b}^{2}+{c}^{2}}{b+c}$+$\frac{{c}^{2}+{a}^{2}}{c+a}$+$\frac{{a}^{2}+{b}^{2}}{a+b}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{4}$+y2=1£¬¹ýËüµÄ×ó½¹µãÒýÇãб½ÇΪ$\frac{¦Ð}{3}$µÄÏÒPQ£¬ÔòPQÖеã×ø±êΪ£¨-$\frac{12\sqrt{3}}{13}$£¬$\frac{3}{13}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªF1•F2ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÁ½¸ö½¹µã£¬ÆäÖÐF2ÓëÅ×ÎïÏßy2=12xµÄ½¹µãÖØºÏ£¬MÊÇÁ½ÇúÏßµÄÒ»¸ö½»µã£¬ÇÒÓÐcos¡ÏMF1F2•cos¡ÏMF2F1=$\frac{7}{23}$£¬ÇóÍÖÔ²·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÖÐÐÄÔÚÔ­µã£¬½¹µãÔÚxÖáÉϵÄÍÖÔ²CµÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬µã£¨0£¬$\sqrt{2}$£©ÊÇÍÖÔ²ÓëyÖáµÄÒ»¸ö½»µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±Ïßx=2ÓëÍÖÔ²½»ÓÚP£¬QÁ½µã£¬PµãλÓÚÊǵÚÒ»ÏóÏÞ£¬A£¬BÊÇÍÖÔ²ÉÏλÓÚÖ±Ïßx=2Á½²àµÄ¶¯µã£»
¢ÙÈôÖ±ÏßABµÄбÂÊΪ$\frac{1}{2}$£¬ÇóËıßÐÎAPBQÃæ»ýµÄȡֵ·¶Î§£»
¢Úµ±µãA£¬BÔÚÍÖÔ²ÉÏÔ˶¯£¬ÇÒÂú×ã¡ÏAPQ=¡ÏBPQʱ£¬Ö±ÏßABµÄбÂÊÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö´Ë¶¨Öµ£¬Èô²»ÊÇ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÎªÁ˵õ½º¯Êýy=$\sqrt{2}$sin3xµÄͼÏ󣬿ÉÒÔ½«º¯Êýy=$\sqrt{2}$sin£¨3x+$\frac{¦Ð}{2}$£©µÄͼÏ󣨡¡¡¡£©
A£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»B£®ÏòÓÒÆ½ÒÆ$\frac{¦Ð}{2}$¸öµ¥Î»
C£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»D£®Ïò×óÆ½ÒÆ$\frac{¦Ð}{2}$¸öµ¥Î»

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸