【题目】如图,在平面直角坐标系中,椭圆:的离心率为,焦点到相应准线的距离为,,分别为椭圆的左顶点和下顶点,为椭圆上位于第一象限内的一点,交轴于点,交轴于点.
(1)求椭圆的标准方程;
(2)若,求的值;
(3)求证:四边形的面积为定值.
科目:高中数学 来源: 题型:
【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,对任意满足,且,数列满足,其前9项和为63.
(1)求数列和的通项公式;
(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;
(3)将数列的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:,求这个新数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.
(1)求小张在这次活动中获得的奖金数的概率分布及数学期望;
(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex(sinx﹣ax2+2a﹣e),其中a∈R,e=2.71818…为自然数的底数.
(1)当a=0时,讨论函数f(x)的单调性;
(2)当 ≤a≤1时,求证:对任意的x∈[0,+∞),f(x)<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某中学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男、女生上网时间与频数分布表
上网时间(分钟) | [30,40) | [40,50) | [50,60) | [60,70) | [70,80] |
男生人数 | 5 | 25 | 30 | 25 | 15 |
女生人数 | 10 | 20 | 40 | 20 | 10 |
(Ⅰ)若该中学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成下表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:公式,其中
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)证明:平面ACEF⊥平面ABCD;
(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为 (t为参数,α为直线的倾斜角).以平面直角坐标系xOy极点,x的正半轴为极轴,取相同的长度单位,建立极坐标系.圆的极坐标方程为ρ=2cosθ,设直线与圆交于A,B两点. (Ⅰ)求圆C的直角坐标方程与α的取值范围;
(Ⅱ)若点P的坐标为(﹣1,0),求 + 取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com