精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=ax2+blnx在x=1处有极值$\frac{1}{2}$.则则a+b=-$\frac{1}{2}$.

分析 由题意可知:求导f′(x)=2ax+$\frac{b}{x}$,由f′(1)=0,f(1)=$\frac{1}{2}$,代入求得a和b,求得a+b的值.

解答 解:f(x)=ax2+blnx,求导f′(x)=2ax+$\frac{b}{x}$,
由x=1处有极值$\frac{1}{2}$,即f′(1)=0,f(1)=$\frac{1}{2}$,
∴2a+b=0,
f(1)=a=$\frac{1}{2}$,
∴b=-1,
∴$a+b=-\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.

点评 本题考查利用导数研究函数的极值,考查极值存在条件,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下列说法中错误的是(  )
A.命题“若x=1,则x2+x-2=0”的否命题是假命题
B.空间任意一点O与不共线的三点A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-2$\overrightarrow{OB}$-$\overrightarrow{OC}$,则P,A,B,C四点共面
C.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
D.过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=(x-a)2lnx,a∈R
(1)证明:函数f(x)=(x-a)2lnx,a∈R的图象恒经过一个定点;
(2)若函数h(x)=$\frac{x}{x-a}$f′(x)在(0,+∞)有定义,且不等式h(x)≤0在(0,+∞)上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=lnx-$\frac{a}{x}$.
(1)若f(x)在区间[1,e2]上有最小值2,求a的值(e≈2.718);
(2)在(1)的条件下,?x1x2∈[1,e2]都有|f(x1)-f(x2)|<et-2,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=lnx.
(1)求g(x)=f(x)-(x-1)的最大值;
(2)若?x>0,f(x)<ax≤x2+1成立,求a的取值范围;
(3)若m>n>0,试比较$\frac{f(m)-f(n)}{m-n}$与$\frac{2n}{{{m^2}+{n^2}}}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx,g(x)=f[tx-(t-1)m]-tf(x),(其中m,t为常数且0<t<1,m>0).
(Ⅰ)求g(x)的极值;
(Ⅱ)?n>0,是否存在x0>0,使得|$\frac{{f({x_0}+1)}}{x_0}-1}$|<n成立,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{1}{{e}^{x}}$+$\frac{a}{x}$(x>0,a∈R),若存在实数m,n,使得f(x)≥0的解集恰好为[m,n],则实数a的取值范围为(-$\frac{1}{e}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(k2+k-2)x2+(k+3)y2=1表示焦点在y轴上的双曲线,则k的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}-x(x≥0)}\\{x+1(x<0)}\end{array}}$,则f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案