分析 由题意可知:求导f′(x)=2ax+$\frac{b}{x}$,由f′(1)=0,f(1)=$\frac{1}{2}$,代入求得a和b,求得a+b的值.
解答 解:f(x)=ax2+blnx,求导f′(x)=2ax+$\frac{b}{x}$,
由x=1处有极值$\frac{1}{2}$,即f′(1)=0,f(1)=$\frac{1}{2}$,
∴2a+b=0,
f(1)=a=$\frac{1}{2}$,
∴b=-1,
∴$a+b=-\frac{1}{2}$,
故答案为:-$\frac{1}{2}$.
点评 本题考查利用导数研究函数的极值,考查极值存在条件,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=1,则x2+x-2=0”的否命题是假命题 | |
| B. | 空间任意一点O与不共线的三点A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-2$\overrightarrow{OB}$-$\overrightarrow{OC}$,则P,A,B,C四点共面 | |
| C. | 命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0” | |
| D. | 过点(0,2)与抛物线y2=8x只有一个公共点的直线有3条 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com