精英家教网 > 高中数学 > 题目详情
(2012•朝阳区二模)在直角坐标系xOy中,直线Z的参数方程为
x=t
y=4+t
(t为参数,且t>0);以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线c的极坐标方程为ρ=4
2
sin(θ+
π
4
)
.则直线l和曲线C的公共点有(  )
分析:将参数方程转化为一般直角坐标系的方程,再联立方程判断直线l和曲线C的公共点个数;
解答:解:∴直角坐标系xOy中,直线Z的参数方程为
x=t
y=4+t
(t为参数,且t>0);
可得y=x+4,②x>0,
方程为ρ=4
2
sin(θ+
π
4
)

∴p=4
2
2
2
sinθ+
2
2
cosθ
)=4sinθ+4cosθ,
x=ρcosθ
y=ρsinθ
,可得
x=4sinθcosθ+4cos2θ
y=4sin2θ+4cosθsinθ

可得(x+y-4)2+(x-y)2=16①,
联立①②直线l和曲线C在x>0上有几个交点;
(2x)2+42=16,4x2+16=16,
∴x=0,y=4,所以在x>0上没有交点,
∴直线l和曲线C的公共点为0个,
故选A;
点评:此题主要考查参数方程与极坐标方程,联立方程进行判断,考查的知识点比较全面,注意x>0的情况,此题是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•朝阳区二模)已知函数f(x)=
3
sinxcosx-cos2x+m(m∈R)
的图象过点M(
π
12
,0).
(1)求m的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,若ccosB+bcosC=2acosB,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)设函数f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲线y=f(x)在点(1,f(1))处的切线l的斜率为2-3a,求实数a的值;
(2)讨论函数f(x)的单调性;
(3)在(1)的条件下,求证:对于定义域内的任意一个x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)设集合U={0,1,2,3,4,5},A={1,2},B={x∈Z|x2-5x+4<0},则?U(A∪B)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)若实数x,y满足
x-y+1≤0
x≤0
则x2+y2的最小值是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区二模)已知函数f(x)=
2,x>m
x2+4x+2,x≤m
的图象与直线y=x恰有三个公共点,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案