精英家教网 > 高中数学 > 题目详情
2.已知集合A={x||x|<1},B={x|x2-x<0},则A∩B=(  )
A.[-1,2]B.[0,1]C.(0,1]D.(0,1)

分析 求出A与B中不等式的解集分别确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:-1<x<1,即A=(-1,1),
由B中不等式变形得:x(x-1)<0,
解得:0<x<1,即B=(0,1),
则A∩B=(0,1),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.对a、b∈R,记$max\left\{{a\;,\;\;b}\right\}=\left\{\begin{array}{l}a\;,\;\;a≥b\\ b\;,\;\;a<b\end{array}\right.$,函数f(x)=max{|x|,-x2-2x+2},x∈(-4,3)
(1)求f(0),f(-3);
(2)写出解析式,并作出f(x)的图象;
(3)就k的值讨论关于x的议程f(x)=k解的个数情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数没有零点的是(  )
A.$f(x)={log_2}^x-3$B.$f(x)=\sqrt{x}-4$C.f(x)=$\frac{1}{x-1}$D.f(x)=x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.圆C:x2+y2-4=0被直线l:x-y+2=0截得的弦长为(  )
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$1-\frac{2}{{{3^x}+1}}$
(Ⅰ)用定义证明f(x)是R上的增函数;
(Ⅱ)当x∈[-1,2]时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.单调递增数列数列{an}的通项公式为an=n2+bn,则实数b的取值范围为(-3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.双曲线$\frac{x^2}{16}-\frac{y^2}{8}=1$的虚轴长是(  )
A.2B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知U=R,集合A={x|(x-2)[x-(3a+1)<0]},集合$B=\left\{{x\left|{\frac{x-2a}{{x-({{a^2}+1})}}<0}\right.}\right\}$.
(1)当a=2时,求A∩∁UB;
(2)当a≠1时,若A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设向量$\overrightarrow a$与$\overrightarrow b$满足$\overrightarrow a$=(-2,1),$\overrightarrow a$+$\overrightarrow b$=(-1,-2),则|${\overrightarrow a$-$\overrightarrow b}$|=5.

查看答案和解析>>

同步练习册答案