精英家教网 > 高中数学 > 题目详情
10.圆C:x2+y2-4=0被直线l:x-y+2=0截得的弦长为(  )
A.$2\sqrt{3}$B.$4\sqrt{3}$C.$2\sqrt{2}$D.$4\sqrt{2}$

分析 求出圆心到直线的距离,利用半径、半弦长,弦心距满足勾股定理,求出半弦长,即可求出结果.

解答 解:由题意,弦心距为:$\frac{2}{\sqrt{2}}$=$\sqrt{2}$;半径为:2,半弦长为:$\sqrt{2}$,弦长=2$\sqrt{2}$.
故选C.

点评 本题是基础题,考查直线与圆的位置关系,弦长的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数y=(a2-1)x2+(a-1)x+3(x∈R),写出y>0的充要条件a≥1或a<-$\frac{13}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断圆x2+y2-2x-3=0和x2+y2-4y+3=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.中心在原点,焦点在x轴上,焦距等于12,离心率等于$\frac{3}{5}$,则此椭圆的方程是(  )
A.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1B.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=x2-ax+a(x∈R)同时满足:
①不等式f(x)≤0的解集有且只有一个元素;
②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
设数列{an}的前n项和Sn=f(n).
(1)求函数f(x)的表达式;
(2)设各项均不为0的数列{bn}中,所有满足bi•bi+1<0的整数i的个数称为这个数列{bn}的变号数,令${b_n}=1-\frac{a}{a_n}$(n∈N*),求数列{bn}的变号数;
(3)设数列{cn}满足:${c_n}=\sum_{i=1}^n{\frac{1}{{{a_i}•{a_{i+1}}}}}$,试探究数列{cn}是否存在最小项?若存在,求出该项,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列在曲线$\left\{\begin{array}{l}x=cosθ+sinθ\\ y=sin2θ\end{array}$(θ为参数)上的点是(  )
A.$(\frac{1}{2},-\sqrt{2})$B.$(2,\sqrt{3})$C.$(\sqrt{2},1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x||x|<1},B={x|x2-x<0},则A∩B=(  )
A.[-1,2]B.[0,1]C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定点M(-3,0),N(2,0),如果动点P满足|PM|=2|PN|,则点P的轨迹所包围的图形面积等于(  )
A.$\frac{100π}{9}$B.$\frac{142π}{9}$C.$\frac{10π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$C:\frac{x^2}{8+a}+\frac{y^2}{9}=1$的焦距为$4\sqrt{2}$,则a=9或-7;当a<0时,椭圆C上存在一点P,有|PF1|=2|PF2|(F1,F2为椭圆焦点),则△F1PF2的面积为$\sqrt{7}$.

查看答案和解析>>

同步练习册答案