精英家教网 > 高中数学 > 题目详情
8.已知抛物线y2=2px(p>0)的焦点为F,直线y=2x交抛物线于O,A两点,直线AF交抛物线于另一点B,则tan∠AOB=-$\frac{4}{3}$.

分析 联立直线方程和抛物线方程,求得A的坐标,由F的坐标,可得B的坐标,再由二倍角的正切公式,计算即可得到所求值.

解答 解:由$\left\{\begin{array}{l}{y=2x}\\{{y}^{2}=2px}\end{array}\right.$,
得A($\frac{1}{2}$p,p),又F($\frac{1}{2}$p,0),
∴B($\frac{1}{2}$p,-p),
∴∠AOB=2∠AOF,tan∠AOF=$\frac{p}{\frac{1}{2}p}$=2,
则 tan∠AOB=$\frac{2tan∠AOF}{1-ta{n}^{2}∠AOF}$=$\frac{2×2}{1-{2}^{2}}$=-$\frac{4}{3}$.
故答案为:-$\frac{4}{3}$.

点评 本题考查直线和抛物线的位置关系,考查二倍角的正切公式,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在四棱锥ABCD-A1B1C1D中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k(k>0),现将与四棱锥ABCD-A1B1C1D形状和大小完全相同的两个四棱柱拼接成一个新的棱柱,规定:若拼接成的新的四棱锥形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的方案?在这些拼接成的新的四棱柱中,记其中最小的表面积为f(k),写出f(k)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出以下算法:
S1:i=3,S=0,
S2:i=i+2;
S3=S+i;
S4:S≥2008?如果S≥2008,执行S5;否则执行S2
S5:输出i;S6:结束.
则算法完成后,输出i的值等于89.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知(1-a2x>(1-a2-x(-1<a<1),求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设A,B是抛物线x2=2py(p>0)两点,且满足$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
(1)求证:直线AB经过一定点
(2)当线段AB的中点到直线y-2x=0的距离的最小值为$\frac{2\sqrt{5}}{5}$,求p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是边长为2$\sqrt{2}$的正方形,PD=4,E,F是PB上的动点,且EF=2.
(1)求证:AC⊥平面PDB;
(2)求三棱锥F-AEC的体积;
(3)若点G在PA上运动,且满足$\frac{PG}{PA}$=$\frac{PF}{PB}$=x,试将三棱锥A-DGF的体积V表示为x的函数,并求体积V的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9. 如图,斜四边形ABCD-A1B1C1D1的底面是边长为8cm的正方形,侧棱AA1成为12cm,且上底面的顶点A1与下底面各点间的距离相等,则四棱柱的侧面积是$32\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=xn(1-x)(x>0),n为正整数.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)证明:不等式lnt≥1-$\frac{1}{t}$及f(x)<$\frac{1}{ne}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=ln$\frac{x+1}{2}$+$\frac{1-x}{a(x+1)}$(a>0).
(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)求证:当n∈N*且n>2时,$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$+…+$\frac{1}{n}$<lnn.

查看答案和解析>>

同步练习册答案