| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
分析 由题意,从图看出x1,x2∈[a,b],f(x1)=f(x2),可知x1,x2关系函数的对称轴是对称的.即$x=\frac{{x}_{1}+{x}_{2}}{2}$时其中一条对称轴,且f($\frac{{x}_{1}+{x}_{2}}{2}$)=2,f(x1+x2)=$\sqrt{3}$,即可求解φ的值.
解答 解:由题意,从图看出A=2,x1,x2∈[a,b],f(x1)=f(x2),
可知x1,x2关系函数的对称轴是对称的.即$x=\frac{{x}_{1}+{x}_{2}}{2}$时其中一条对称轴,且f($\frac{{x}_{1}+{x}_{2}}{2}$)=2,
∴函数f($\frac{{x}_{1}+{x}_{2}}{2}$)=2Asin(ω($\frac{{x}_{1}+{x}_{2}}{2}$)+φ)=2,
可得:ω($\frac{{x}_{1}+{x}_{2}}{2}$)+φ=$\frac{π}{2}+2kπ$,k∈Z…①.
∵f(x1+x2)=$\sqrt{3}$,
∴函数f(x1+x2)=2Asin(ω(x1+x2)+φ)=$\sqrt{3}$,
可得:ω(x1+x2)+φ=$\frac{π}{3}+2kπ$或$\frac{2π}{3}+2kπ$,k∈Z…②.
令k=0,由①②解得:φ=$\frac{2π}{3}$或$\frac{π}{3}$
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$
故选D.
点评 本题主要考查三角函数的图象和性质的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 360种 | B. | 520种 | C. | 600种 | D. | 720种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点P与图中的点D重合 | B. | 点P与图中的点E重合 | ||
| C. | 点P与图中的点F重合 | D. | 点P与图中的点G重合 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{\sqrt{e}}{2e}$) | C. | ($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com