精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\frac{1}{2}$-(x-$\sqrt{e}$)(x-$\frac{1}{2}$)(其中x∈(0,+∞)),g(x)=lnx和函数h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$,若方程h(x)=kx有四个不同的解,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{\sqrt{e}}{2e}$)C.($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$)D.($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$)

分析 作出函数图象,求出切线斜率,根据交点个数得出k的范围.

解答 解:作出h(x)的函数图象如图所示:

设直线y=kx与曲线g(x)=lnx相切,切点为(x0,y0),
则有$\left\{\begin{array}{l}{{y}_{0}=k{x}_{0}}\\{{y}_{0}=ln{x}_{0}}\\{\frac{1}{{x}_{0}}=k}\end{array}\right.$,解得k=$\frac{1}{e}$.
∵h(x)=kx有四个不同的解,
∴直线y=kx与f(x)有2个交点,y=kx与g(x)有2个交点,
∴k<$\frac{1}{e}$,排除D,
设f(x)与g(x)的交点为A,显然A在第一象限,即kOA>0,
∴k>kOA.排除A,B.
故选C.

点评 本题考查了函数的图象与性质,导数的几何意义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)图象的一部分,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,则φ的值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在[45,75)内为优质品,从两个企业生产的零件中各随机抽出了500件,测量这些零件的质量指标值,得结果如表:
甲企业:
 分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 10 40 115 165 120 45 5
乙企业:
分组[25,35)[35,45)[45,55)[55,65)[65,75)[75,85)[85,95)
 频数 5 60 110 160 90 70 5
(1)已知甲企业的500件产品质量指标值的样本方差s2=142,该企业生产的零件质量指标值X服从正态分布N(μ,σ2),其中μ近似为质量指标值的样本平均数$\overline{x}$(注:求$\overline{x}$时,同一组数据用该区间的中点值作代表),σ2近似为样本方差s2,试根据该企业的抽样数据,估计所生产的零件中,质量指标值不低于71.92的产品的概率(精确到0.001)
(2)由以上统计数据完成下面2×2列联表,并问能否在犯错误的概率不超过0.01的前提下,认为“两个分厂生产的零件的质量有差异”
  甲厂乙厂 合计 
 优质品   
 非优质品   
 合计   
附注:
参考数据:$\sqrt{142}$≈11.92
参考公式:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2σ)=0.9545,P(μ-3σ<X<μ+3σ)=0.9973.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k0 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 
 k0 0.4550.708 1.323 2.0722.706 3.841 5.024 6.635 7.879 10.828 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一货轮航行至M处,测得灯塔S在货轮的北偏西15°,与灯塔相距80海里,随后货轮沿北偏东45°的方向航行了50海里到达N处,则此时货轮与灯塔S之间的距离为(  )
A.70海里B.10   129海里
C.10    79海里D.10  89-40  3海里

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6,则5a1+3a3+a5=-30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sin2$\frac{ωx}{2}$+$\frac{1}{2}$sinωx-$\frac{1}{2}$(ω>0),x∈R.若f(x)在区间(π,2π)内没有零点,则ω的取值范围是(  )
A.(0,$\frac{1}{8}$]B.(0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1)C.(0,$\frac{5}{8}$]D.(0,$\frac{1}{8}$]∪($\frac{1}{4}$,$\frac{5}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}的前n项和为Sn,公差为1,若S6=3S3,则a9=(  )
A.11B.$\frac{19}{2}$C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.不论α为实数,直线(a-3)x+ay+1=0恒过定点($\frac{1}{3}$,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.集合A中的元素个数用符号card(A)表示,设A={x|(lnx)2+mx2lnx>0},N为自然数集,若card(A∩N)=3,则实数m的取值范围是(  )
A.(-$\frac{ln2}{4}$,-$\frac{ln2}{8}$]B.(-$\frac{ln2}{8}$,-$\frac{ln5}{30}$]C.(-$\frac{ln2}{8}$,-$\frac{ln5}{25}$]D.(-$\frac{ln3}{9}$,-$\frac{ln2}{8}$]

查看答案和解析>>

同步练习册答案