| A. | (0,$\frac{1}{2}$) | B. | (0,$\frac{\sqrt{e}}{2e}$) | C. | ($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$) |
分析 作出函数图象,求出切线斜率,根据交点个数得出k的范围.
解答 解:作出h(x)的函数图象如图所示:![]()
设直线y=kx与曲线g(x)=lnx相切,切点为(x0,y0),
则有$\left\{\begin{array}{l}{{y}_{0}=k{x}_{0}}\\{{y}_{0}=ln{x}_{0}}\\{\frac{1}{{x}_{0}}=k}\end{array}\right.$,解得k=$\frac{1}{e}$.
∵h(x)=kx有四个不同的解,
∴直线y=kx与f(x)有2个交点,y=kx与g(x)有2个交点,
∴k<$\frac{1}{e}$,排除D,
设f(x)与g(x)的交点为A,显然A在第一象限,即kOA>0,
∴k>kOA.排除A,B.
故选C.
点评 本题考查了函数的图象与性质,导数的几何意义,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) | [75,85) | [85,95) |
| 频数 | 10 | 40 | 115 | 165 | 120 | 45 | 5 |
| 分组 | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) | [75,85) | [85,95) |
| 频数 | 5 | 60 | 110 | 160 | 90 | 70 | 5 |
| 甲厂 | 乙厂 | 合计 | |
| 优质品 | |||
| 非优质品 | |||
| 合计 |
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 70海里 | B. | 10 129海里 | ||
| C. | 10 79海里 | D. | 10 89-40 3海里 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{8}$] | B. | (0,$\frac{1}{4}$]∪[$\frac{5}{8}$,1) | C. | (0,$\frac{5}{8}$] | D. | (0,$\frac{1}{8}$]∪($\frac{1}{4}$,$\frac{5}{8}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{ln2}{4}$,-$\frac{ln2}{8}$] | B. | (-$\frac{ln2}{8}$,-$\frac{ln5}{30}$] | C. | (-$\frac{ln2}{8}$,-$\frac{ln5}{25}$] | D. | (-$\frac{ln3}{9}$,-$\frac{ln2}{8}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com