精英家教网 > 高中数学 > 题目详情
6.若(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6,则5a1+3a3+a5=-30.

分析 把所给的等式两边对x求导数后,再分别令x=1,x=-1,可得2个式子,再把这2个式子相加除以2,可得5a1+3a3+a5的值.

解答 解:∵(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6
对等式两边同时对x求导数可得3(4x-1)•(2x2-x-1)2 =6a0x5+5a1x4+4a2x3+3a3x2+2a4x+a5 ①,
在①中,令x=1,可得0=6a0 +5a1 +4a2 +3a3 +2a4+a5
在①中,令x=-1,可得-60=-6a0 +5a1 -4a2 +3a3-2a4+a5
再把这2个式子相加除以2,可得5a1+3a3+a5=-30,
故答案为:-30.

点评 本题主要考查二项式定理的应用,求函数的导数,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-$\frac{1}{2}$|+|2x+1|.
(Ⅰ)求函数f(x)的最小值m;
(Ⅱ)若正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=m,且|x-2|≤a+2b对任意的正实数a,b恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P是y轴正半轴上一点,以OP为直径的圆在第一象限与双曲线的渐近线交于点M,若点P,M,F三点共线,且△MFO的面积是△PMO面积的7倍,则双曲线C的离心率为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥P-ABC中,平面PAC⊥平面PAB,△PAC为等边三角形,AB⊥PB且AB=PB=$\sqrt{2}$,O为PA的中点,点M在AC上.
(1)求证:平面BOM⊥平面PAC;
(2)求点P到平面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对边长分别为a,b,c,已知sinC=$\sqrt{2}$sinB.
(Ⅰ)若A=45°,求C;
(Ⅱ)若a=2,求△ABC面积的最大值及此时b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\frac{1}{2}$-(x-$\sqrt{e}$)(x-$\frac{1}{2}$)(其中x∈(0,+∞)),g(x)=lnx和函数h(x)=$\left\{\begin{array}{l}{f(x)}&{f(x)≥g(x)}\\{g(x)}&{f(x)<g(x)}\end{array}\right.$,若方程h(x)=kx有四个不同的解,则实数k的取值范围是(  )
A.(0,$\frac{1}{2}$)B.(0,$\frac{\sqrt{e}}{2e}$)C.($\frac{\sqrt{e}}{2e}$,$\frac{1}{e}$)D.($\frac{1}{e}$,$\frac{\sqrt{e}}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合U={1,2,3,4,5,6,7},集合A={1,2,5,7},则∁UA=(  )
A.{1,2,5,7}B.{3,4,6}C.{6}D.U

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平行六面体ABCD-A1B1C1D1中,与AD异面的棱的条数是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,若数列{an+an+1+an+2}是以2为公比的等比数列,则S26的值为(  )
A.$\frac{3({2}^{27}-1)}{7}$B.$\frac{3({2}^{27}-2)}{7}$C.$\frac{3({2}^{26}-1)}{7}$D.$\frac{3({2}^{26}-2)}{7}$

查看答案和解析>>

同步练习册答案