精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C所对边长分别为a,b,c,已知sinC=$\sqrt{2}$sinB.
(Ⅰ)若A=45°,求C;
(Ⅱ)若a=2,求△ABC面积的最大值及此时b的值.

分析 (Ⅰ)可得sinC=$\sqrt{2}sin(A+C)=\sqrt{2}sin(4{5}^{0}+C)$⇒sinC=sinC+cosC⇒cosC=0,得C=$\frac{π}{2}$;
(Ⅱ)可得c=$\sqrt{2}b$,由余弦定理得b2=a2+c2-2accosB⇒b2+4=4ccosB,⇒16c2sin2B=-(b2-12)2+128≤128
 即b=2$\sqrt{3}$时,△ABC面积s=$\frac{1}{2}acsinB$的最大值为2$\sqrt{2}$.

解答 解:(Ⅰ)∵$\left\{\begin{array}{l}{B=π-(A+C)}\\{sinC=\sqrt{2}sinB}\end{array}\right.$,∴sinC=$\sqrt{2}sin(A+C)=\sqrt{2}sin(4{5}^{0}+C)$
⇒sinC=sinC+cosC⇒cosC=0,∵C=$\frac{π}{2}$;
(Ⅱ)∵sinC=$\sqrt{2}$sinB,∴$c=\sqrt{2}b$,
由余弦定理得b2=a2+c2-2accosB⇒b2+4=4ccosB
⇒(b2+4)2=16c2cos2B=16c2(1-sin2B)
⇒16c2sin2B=-(b2-12)2+128≤128
∴当b=2$\sqrt{3}$时,(csinB)max=2$\sqrt{2}$
即b=2$\sqrt{3}$时,△ABC面积s=$\frac{1}{2}acsinB$的最大值为2$\sqrt{2}$.

点评 本题考查了三角恒等变形,正余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,a1=-12,a5=2a6
(I)求数列{an}的通项公式以及前n项和Sn
(Ⅱ)求使得Sn>14的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.计算下面导数.各函数自变量均在定义域内.
(1)y=$\sum_{n=0}^{∞}$$\frac{{x}^{n}}{n!}$;
(2)y=$\sqrt{1-{x}^{2}}$;
(3)y=arcsinx;
(4)y=ax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,已知cosA=cosB,则△ABC的形状一定是(  )
A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.我们知道,在平面内,点(x0,y0)到直线Ax+By+C=0的距离公式为d=$\frac{|A{x}_{0}+B{y}_{0}+C|}{\sqrt{{A}^{2}+{B}^{2}}}$,通过类比的方法.可求得:在空间中,点(0,1,-1)到平面x+2y+2z+3=0的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(2x2-x-1)3=a0x6+a1x5+a2x4+a3x3+a4x2+a5x+a6,则5a1+3a3+a5=-30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x)=x3+x,若0≤θ≤$\frac{π}{2}$时,f(sinθ)+f(1-m)>0恒成立,则实数m的取值范围是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,底面ABCD四正方形,PA⊥底面ABCD,垂足为点A,PA=AB=4,点M,N分别是PD,PB的中点.
(Ⅰ)求证:PB∥平面ACM;
(Ⅱ)求证:MN⊥平面PAC;
(Ⅲ)求四面体A-BMC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|y=$\sqrt{-{x}^{2}+x+2}$},B={y|y=2x},则A∩B=(  )
A.B.[0,2]C.(0,2]D.[-1,2]

查看答案和解析>>

同步练习册答案