精英家教网 > 高中数学 > 题目详情
12.计算下面导数.各函数自变量均在定义域内.
(1)y=$\sum_{n=0}^{∞}$$\frac{{x}^{n}}{n!}$;
(2)y=$\sqrt{1-{x}^{2}}$;
(3)y=arcsinx;
(4)y=ax

分析 分别根据基本导数公式求导即可.

解答 解:(1)y=$\sum_{n=0}^{∞}$$\frac{{x}^{n}}{n!}$;则y′=$\sum_{n=1}^{∞}$$\frac{{x}^{n-1}}{(n-1)!}$;
(2)y=$\sqrt{1-{x}^{2}}$;则y′=$\frac{1}{2}$(1-x2)${\;}^{-\frac{1}{2}}$(1-x2)′=-$\frac{x\sqrt{1-{x}^{2}}}{1-{x}^{2}}$
(3)y=arcsinx,则y′=$\frac{1}{\sqrt{1-{x}^{2}}}$
(4)y=ax.则y′=axlna.

点评 本题考查了导数的求导法则和基本导数公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在下列四个图中,每个图的两个变量具有相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是某几何体的三视图,则此几何体可由下列哪两种几何体组合而成(  )
A.两个长方体B.两个圆柱
C.一个长方体和一个圆柱D.一个球和一个长方体

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(  )
A.$\frac{π}{2}+1$B.$\frac{π}{2}+3$C.$\frac{3π}{2}+1$D.$\frac{3π}{2}+3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求实数λ的取值范围,使不等式|$\frac{1-abλ}{aλ-b}$|>1对满足|a|<1,|b|<1的一切实数a,b恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P是y轴正半轴上一点,以OP为直径的圆在第一象限与双曲线的渐近线交于点M,若点P,M,F三点共线,且△MFO的面积是△PMO面积的7倍,则双曲线C的离心率为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知 f (x)=sin(x+$\frac{π}{2}$),g(x)=sin(π-x),则下列结论中正确的是(  )
A.函数 y=f (x)•g ( x) 的周期为 2
B.函数 y=f (x)•g ( x) 的最大值为 1
C.将f (x)的图象向左平移$\frac{π}{2}$个单位后得到 g(x)的图象
D.y=f(x)+g(x)的一个对称中心是($\frac{3}{4}π$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对边长分别为a,b,c,已知sinC=$\sqrt{2}$sinB.
(Ⅰ)若A=45°,求C;
(Ⅱ)若a=2,求△ABC面积的最大值及此时b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在正方体ABCD-A1B1C1D1中挖去一个圆锥,得到一个几何体M,已知圆锥顶点为正方形ABCD的中心,底面圆是正方形A1B1C1D1的内切圆,若正方体的棱长为acm.
(1)求挖去的圆锥的侧面积;
(2)求几何体M的体积.

查看答案和解析>>

同步练习册答案